ハート型の詰め込み

tb_lb 自動ジャッジ 難易度: 数学 > 中学数学
2022年2月13日22:16 正解数: 4 / 解答数: 7 (正答率: 57.1%) ギブアップ不可
初等幾何 長さ

【補助線主体の図形問題 #046】
 バレンタイン直前なのを意識してこんな図形問題を用意してみました。イベント便乗の色物問題ですが、方針次第では暗算で処理できるのはいつも通りです。補助線と共に存分にお楽しみください。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

円と3本の直径

tb_lb 自動ジャッジ 難易度:
3年前

12

【補助線主体の図形問題 #021】
 今回は久しぶりに面積関係の問題を用意してみました。複雑な計算は必要ありません。腕に覚えのある方はぜひ脳内だけでの処理に挑戦してみてください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
\def\mytri#1{\triangle \mathrm{#1}}
\def\jpara{\mathrel{\unicode{x2AFD}}}
\def\paraeq{\mathrel{\style{transform:translateY(-0.4em)}{\scriptsize{/\!/}} \hspace{-0.7em}{\style{transform:translateY(0.1em)}{=}}}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm^2$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm^2$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm^2$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

ヒント内容の予告

  1. 全体の方針をぼんやりと
  2. ヒント1の続き
  3. ヒント2から導けること・その1
  4. ヒント2から導けること・その2

長方形と3つの円

tb_lb 自動ジャッジ 難易度:
2年前

4

【補助線主体の図形問題 #056】
 今週の図形問題は内心多めでお送りします。直感でいろいろ断定したくなりますが、ぐっとこらえて論証まで楽しんでいただけたら幸いです。暗算解法も仕込んでありますよ!

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。


【補助線主体の図形問題 #042】
 西暦問題をお送りしてきた新年の特別出題も終わり、通常出題である補助線主体の図形問題に戻ります。
 今回の問題、図から何かを読み取りたくなりますが、その直感の根拠までぜひ考えてみてください。暗算解法もいつも通り仕込んでありますよ!

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm^2$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm^2$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm^2$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

2年前

4

【補助線主体の図形問題 #075】
${
\def\mytri#1{\triangle \mathrm{#1}}
}$ 今週の図形問題のテーマは面積関係です。便宜的に$\mytri{ADP}$の面積を問うていますが、まずは$\mytri{ACP}:\mytri{ADP}$を経由すると考えやすいかと思います。想定解は暗算でも処理可能ですが、どうぞお好きなように解いてやってください!

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm^2$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm^2$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm^2$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

正三角形と円の求角

tb_lb 自動ジャッジ 難易度:
2年前

8

【補助線主体の図形問題 #041】
 2021年最後の投稿となりました。本問も変わらず発想次第では暗算での処理が可能です。自信のある方は紙・ペンを利用せず、脳内処理だけで解いてみてください!

★予告★

${}$ 週に1回、補助線主体の初等幾何のお送りしてきましたが、年明けは西暦である2022を織り込んだパズルや整数問題などをお送りします。曜日と関係なく、1月1日もしくは2日から6~7日連続して投稿する予定です。ぜひご期待ください。

解答形式

${\renewcommand\deg{{}^{\circ}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。角度は弧度法ではなく度数法で表すものとします。
(例) $12\deg$ → $\color{blue}{12.00}$  $\frac{360}{7}^{\circ}$ → $\color{blue}{51.43}$
 入力を一意に定めるための処置です。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

2年前

4

【補助線主体の図形問題 #059】
 今週の図形問題はいつもと趣向が少し異なり連問です。入試問題における大問を(1)(2)と2週に分けて出題するイメージです。
 (1)である当問ですが、いつも通り暗算解法を仕込んでいます。計算量は少ないのですが、補助線を含む筋道がそこそこ長いです。じっくりと腰を据えてお楽しみください。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

3年前

7

【補助線主体の図形問題 #020】
 今週の図形問題は円がらみの求長問題を用意しました。いつも通り暗算解法も仕込んであります。初等幾何猛者の方はぜひ脳内で処理しきってみてください。猛者とまではいかないという方もじっくりと挑戦してもらえたら嬉しいです!

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
\def\myang#1{\angle \mathrm{#1}}
\renewcommand\deg{{}^{\circ}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

ヒント内容の予告

  1. 全体方針をぼんやりと
  2. ヒント1の続き
  3. ヒント2をやや具体的に
  4. ヒント3の続き

【補助線主体の図形問題 #037】
 ここ数回、正多角形がらみの出題が続いたので、今回は円を登場させてみました。補助線しだいで暗算で処理可能なのはいつもと変わりません。あれやこれやと試行錯誤をお楽しみください。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

求角問題15

Kinmokusei 自動ジャッジ 難易度:
3年前

7

問題文

図の条件の下で、青で示した角の大きさを求めてください。

解答形式

解答を度数法で表し、0以上180未満の数値を半角数字で解答してください。
単位("度・°"など)はつけないでください。

求面積問題23

Kinmokusei 自動ジャッジ 難易度:
3年前

10

問題文

半円の内部に正方形を2つ、図のように配置しました。赤い線分の長さ(=2つの正方形の一辺の差)が3であるとき、青で示した部分の面積と緑で示された部分の面積の差を求めてください。

解答形式

半角数字で解答してください。

3年前

7

【補助線主体の図形問題 #029】
 今回は円がらみの求長問題を用意しました。隠されたある性質を補助線であぶり出しながらお楽しみください。若干面倒な計算が待ち受けているので、簡単な計算用紙があるといいかもしれません。

※2021年9月11日より難易度評価を見直して、総じて★+1しました。この問題の現難易度評価★3.0は、旧評価の★2.0にあたります。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。


【補助線主体の図形問題 #026】
 今回は、たびたび取り上げている傍心に二等辺三角形を組み合わせてみました。暗算解法が仕込まれているのはいつも通り変わりません。補助線を武器に傍心の性質をあぶり出しながらお楽しみください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
\def\jpara{\mathrel{\unicode{x2AFD}}}
\renewcommand\deg{{}^{\circ}}
\def\mytri#1{\triangle \mathrm{#1}}
\def\myang#1{\angle \mathrm{#1}}
\def\jsim{\mathrel{\unicode[sans-serif]{x223D}}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

ヒント内容の予告

  1. 前半の方針
  2. ヒント1の内容を具体的に
  3. 後半の方針