半円と直角三角形を組み合わせた以下の図について、青で示した線分と赤で示した線分の長さの比を求めてください。
$\left(\dfrac{x}{y}\right)^2$ の値を半角数字で解答してください。
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
長方形に内接する半円があります。青い三角形の面積が9のとき、赤い線分の長さを求めてください。
半角数字で解答してください。
2つの直角二等辺三角形が、それらの斜辺が交点をもつように配置されています。青い線分の長さが10、Xで示した角が鈍角のとき、赤い線分の長さを求めてください。 ただし、同じ色で示した線分の長さはそれぞれ等しいです。
(赤い線分の長さ)$=[ア]\sqrt{[イ]}$ となります。 ただし、$[ア],[イ]$にはそれぞれ自然数が入ります。$[ア]+[イ]$を解答してください。また、$[イ]$に入る自然数はできるだけ小さくしてください。 例: (赤い線分の長さ)$=3\sqrt5$ なら、$3+5\rightarrow8$と解答
図の条件の下で、水色で示した三角形の面積を求めてください。
求める面積 $x$ は互いに素な正整数 $a,b$ を用いて $x=\dfrac{a}{b}$ と表せるので、$a+b$ を解答してください。
【補助線主体の図形問題 #044】 今週の図形問題は内心を素材にしてみました。うまい補助線が引けると暗算で処理できるのはいつも通りですが、内心の懐の広さ(?)ゆえに解法の選択肢も広いです。暗算とか気にせずお好きなように解いてもらえたら本望です。
${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。 (例) $12\cm$ → $\color{blue}{12.00}$ $10\sqrt{2}\cm$ → $\color{blue}{14.14}$ $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$ 入力を一意に定めるための処置です。 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。
扇形の内部に図のように線を引きました。赤い線分の長さが$2\sqrt 5$のとき、青い線分の長さを求めてください。
【補助線主体の図形問題 #047】 今週の図形問題は傍心を登場させてみました。傍心は性質の多さの割には出題の例が少ないもので、僕のような初等幾何の問題作成者にはありがたい存在です。当問も暗算解法を仕込んでいます。傍心と戯れる経験は少ないかもしれませんが、臆せず楽しんでもらえれば幸いです。
【補助線主体の図形問題 #024】 今週も補助線主体の図形問題をお送りします。一瞬ギョッとするかもしれませんが、何かが連想できればいつも通り暗算で処理可能です。強引な処理方法もあります。あれこれ試行錯誤を楽しんでもらえれば幸いです。
【補助線主体の図形問題 #039】 今日は12月12日ということでそこかしこに12が現れる問題を用意してみました。補助線が活躍するのはいつも通りですし、暗算処理が可能な解法も仕込んであります。 年末に向かう忙しい時期かもしれませんが、ひと時の図形タイムをお過ごしください!
${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。 (例) $12\cm^2$ → $\color{blue}{12.00}$ $10\sqrt{2}\cm^2$ → $\color{blue}{14.14}$ $\dfrac{1+\sqrt{5}}{2} \cm^2$ → $\color{blue}{1.62}$ 入力を一意に定めるための処置です。 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。
【補助線主体の図形問題 #029】 今回は円がらみの求長問題を用意しました。隠されたある性質を補助線であぶり出しながらお楽しみください。若干面倒な計算が待ち受けているので、簡単な計算用紙があるといいかもしれません。
※2021年9月11日より難易度評価を見直して、総じて★+1しました。この問題の現難易度評価★3.0は、旧評価の★2.0にあたります。
【補助線主体の図形問題 #033】 今週はちょいと重めの問題にしてみました。計算に至る準備過程が長いのですが、補助線や方針がうまいことハマれば計算量はごくわずかで済みます。五心が生み出す豊かな性質をお楽しみください。
【補助線主体の図形問題 #018】 今回は単純な設定なだけに様々な解法が潜んでいそうな問題を用意しました。あれこれ補助線を引いているうちに解けてしまうかもしれませんが、しっかり暗算解法も仕込んであります。いろいろな発想をお楽しみください。
【補助線主体の図形問題 #048】 先週は傍心がらみの求長問題をお送りしましたが、今週は内心と外心の両方が登場する求角問題にしてみました。暗算でも十分処理可能な解法も存在しています。五心の織り成す関係をお楽しみください。
${\renewcommand\deg{{}^{\circ}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。角度は弧度法ではなく度数法で表すものとします。 (例) $12\deg$ → $\color{blue}{12.00}$ $\frac{360}{7}^{\circ}$ → $\color{blue}{51.43}$ 入力を一意に定めるための処置です。 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。