
【補助線主体の図形問題 #073】
今週の図形問題です。中心の位置も半径も中心角も異なる扇形に登場してもらいました。計算に一手間必要なので、簡単なメモ用紙程度の紙は必要になるかと思います。どうぞじっくりとお楽しみください。
お詫びと訂正
(2022年9月27日0時05分)
昨夜投稿した「2つの扇形」ですが、僕が誤った正答を設定してしまい、本来なら正解であるにもかかわらず不正解扱いされてしまう事態が起きてしまいました。お詫びいたします。申し訳ございませんでした。
なお、誤っていた元の問題は削除し(正確には下書きに戻し)、新たに問題を投稿し直しました。誤った問題のせいで下がってしまった正解率については元に戻してもらえるよう問い合わせます。今しばらくお待ちください。
なお、今回の僕の誤りについては複数の指摘がありました。改めてこの場で御礼申し上げます。
(2022年9月29日22時28分追記)
下がってしまった正答率について元に戻していただいた旨の連絡がありました。
解答形式
${}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\ \mathrm{cm}$ → $\color{blue}{12.00}$ $10\sqrt{2}\ \mathrm{cm}$ → $\color{blue}{14.14}$
入力を一意に定めるための処置です。$\pi=3.14$とは限りませんのでご注意ください。関数電卓やグーグルの電卓機能、Wolfram|Alphaなどのご利用をお勧めします。