数列における余りの周期性

KYUGTAEK 採点者ジャッジ 難易度: 数学 > 大学数学
2022年5月20日7:24 正解数: 0 / 解答数: 0 ギブアップ不可
整数 数列 整数問題 群論

問題文

$a_{1} = 3$ , $a_{n+1} = \frac{a_{n}(a_{n}+1)}{2}$

とする($n$は自然数)。

また、$2$ 以上の自然数を $p$ とし、$a_{n}$を $3^{p}$ で割った時の余りを $R_{n}^{p}$ とする。

このとき、数列 {$R_{n}^{p}$} は
「周期の長さが $2×3^{p-2}$ 」であり、
かつ「 $0$ 以上 $3^{p}$ 未満の $3$ の倍数のうち $9$ の倍数ではない数」

をすべて巡回することを示せ。

解答形式

論述形式です。途中までの投稿もOKです。$p$ の値が小さければ、試してみると成立していることが分かります。


スポンサーリンク

解答提出

この問題は出題者ジャッジの問題です。 出題者が解答を確認してから採点を行います。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または