鋭角三角形 $ABC$ に対し,重心と垂心をそれぞれ $G,H$ とし,直線 $GH$ と辺 $AB,AC$ との交点をそれぞれ $D,E$ とし,直線 $AH$ と辺 $BC$ の交点を $F$ としたところ,$DH:HG=4:3,BF:FC=3:7$ となりました. ${AD}^2:{AE}^2$ は互いに素な正の整数 $a,b$ を用いて $a:b$ と表されるので,$a+b$ の値を求めてください.
半角数字で解答してください.
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
以下の条件を全て満たす $20001$ 個の整数の組 $(a_0,a_1,…,a_{20000})$ を 階段状な組 と定義します.
また,階段状な組 $A=(a_0,a_1,…,a_{20000})$ に対して スコア $S(A)$ を以下のように定めます.
階段状な組全てに対してスコア $S(A)$ の総和を求め,その値が $2$ で割り切れる最大の回数を求めてください.
答えを入力してください.
実数列 $\lbrace a_n \rbrace_{n = 1, 2, \cdots 2024}$ が以下を満たしています. ・ $a_0 = 0$ ・ $0 \leq a_n \leq n+1$ ・ $a_{2024} = 2025$
このとき, $$\sum_{n = 1}^{2024} \sqrt{{a_{n-1}}^2 + {a_{n}}^2 - a_{n-1}a_n - 2na_{n-1} + na_n + n^2}$$ には最小値が存在するため, 最小値を取るときの $a_{1000}$ の値を求めて下さい. ($a_{1000}$ の値は一意に定まります.)
答えは, 互いに素な正整数 $a, b$ によって $\cfrac{b}{a}$ と表されるため, $a+b$ の値を解答して下さい.
こちらも問題に不備があったため、数値設定を変更いたしました。不備が重なってしまいたいへん申し訳ありません。
正六角形 $ABCDEF$ の線分 $AC, BC, DE$ 上にそれぞれ点 $P, Q, R$ を取ったところ, $PQ \perp BC, PR \perp DE, \angle QAR=60^\circ$ が成立しました. また, 三角形 $APQ$ の外心を $O$, 三角形 $APR$ の外心を $O^\prime$ とし, 三角形 $AOO^\prime$ の外接円と三角形 $APQ$ の外接円の交点を $X( \neq A)$, 三角形$AOO^\prime$ の外接円 と三角形 $APR$ の外接円の交点を $Y( \neq A)$ とすると, $BY=7$ が成立しました. このとき, 線分 $DX$ の長さを求めて下さい.
答えは最大公約数が $1$ である正整数 $a,b, c$ によって $\cfrac{\sqrt{b}-c}{a}$ と表されるため, $a+b+c$ の値を半角数字で解答してください.
$AB=5,AC=9$ なる三角形 $ABC$ があり,その外接円を $\Gamma$ とします.辺 $BC$ の中点を $D$ とすると,$B$ における $\Gamma$ の接線と半直線 $DA$ が点 $E$ で交わりました.また,辺 $AC$ 上の点 $F$ が $\angle CDF=\angle BEA$ をみたしています.$DF=\dfrac{10}{3}$ のとき,線分 $AE$ の長さは互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ の値を求めてください.
半角数字で解答してください。
各文字が < か > であるような長さ $13$ の文字列 $S$ の内, 次の条件を満たす整数列 $a_1, a_2, \cdots a_{14}$ が一意に存在するようなものはいくつありますか? ・$S$ の $i$ 文字目が < ならば, $a_{i+1} = a_i + 1$ ・$S$ の $i$ 文字目が > ならば, $a_{i+1} = a_i - 1$ ・$1 \leq a_k \leq4 \ (k = 1, 2, \cdots, 14)$
半角数字で解答して下さい.
$2000$ 以下の非負整数 $a$ に対し,数列 $c_{n}$ が以下をみたします. $$c_{1}=a, c_{2}=2000-a, c_{n+2}=c_{n+1}+c_{n}$$ このとき,$c_{2^{4333}}$ が $47^2$ の倍数となるような $a$ としてありうる値の総和を解答してください.
半角数字で解答してください.
$a\lt c$ なる実数 $a, b, c$ が $$\sqrt{(1+a^2)(1+b^2)}=\dfrac{(b+c)(c-a)}{1+c^2}$$ をみたすとき,$(8a+13b+21c)^2$ の取りうる最小値を解答してください.
$\triangle{ABC}$ の外接円を $O_1$ とし,辺 $CA$,辺 $CB$,円 $O_1$ に接する円を $O_2$ とします.また,円 $O_2$ と辺 $CA$ ,辺 $CB$,円 $O_1$ の接点をそれぞれ $P,Q,T$ とし,直線 $TP$ と円 $O_1$ の交点を ${R}(\ne{T})$ とし,直線 $TQ$ と円 $O_1$ の交点を $S(\ne{T})とします.$ $TA=23,TB=35,TC=57$ のとき,(四角形 $ARCS$ の面積):(四角形 $BSCR$ の面積)は互いに素な正の整数 $a,b$ を用いて $a:b$ と表されるので,$a+b$ の値を解答してください.
$1$ 以上の整数 $n$ について関数 $f(n)$ は以下の式により定義されます.$$f(n)=\sum_{k=1}^{2n}\prod_{m=0}^{2^9}(k-m)$$ このとき,$f(n)=0$ の成り立つ $n$ の総和は,素数 $p$ と整数 $m$ を用いて,$pm$ と示せるので,$p+m$ の最小値を回答してください. ただし,素数表:https://onlinemathcontest.com/primes は用いても構いません.
非負整数で回答してください.
$4\times4$ のマス目の各マスに $3,2,6$ のいずれかを書き込む方法のうち,どの横の行に書かれた $4$ 数の積も立方数であり,どの縦の列に書かれた $4$ 数の積も立方数であるような書き込み方は何通りあるかを求めてください. ただし,回転や裏返しにより一致する書き込み方も異なるものとして数えるものとします.また,$3,2,6$ のうち使わない数があっても構いません.
正五角形 $ABCDE$ があり,その中心を $O$ とします.線分 $BO$ 上に点 $F$ を,線分 $EO$ 上に点 $G$ をとり,三角形 $AFG$ の外接円と線分 $AB,AE$ との交点をそれぞれ点 $P,Q$ とすると,以下が成立しました.
$$\angle{FAG}=54^{\circ} , PB=28 , QE = 30$$
このとき,正五角形 $ABCDE$ の一辺の長さを求めてください. ただし,正多角形の中心とはその正多角形の外接円の中心のことを表すとします.
答えは正整数 $a,b,c$ を用いて $a+\sqrt{b - \sqrt{c}}$ と表されるので,$a+b+c$ を解答してください.
$S=\{1,2,3,4,5,6\}$ とします.$S$ の相異なる部分集合 $A,B,C$ の組であって,$A\subset B\subset C$ を満たすものの個数を求めてください. (ただし,$A,B,C$ は空集合や $S$ に一致してもよいものとします.)