Final 2にする予定だったもの

seven_sevens 採点者ジャッジ 難易度: 数学 > 高校数学
2024年2月13日0:10 正解数: 0 / 解答数: 1 ギブアップ不可
積分

全 1 件

回答日時 問題 解答者 結果
2024年1月20日0:21 Final 2にする予定だったもの MARTH
不正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

自作問題2

iwashi 自動ジャッジ 難易度:
7月前

1

問題文

表面積が$\displaystyle n \sin \frac{2\pi}{n}$である正$n$角錐の体積の最大値を$V_n$とする。極限値
$$\begin{eqnarray}
A &=& \lim_{n \to \infty} V_n \\
B &=& \lim_{n \to \infty} n^2 (V_n -A )
\end{eqnarray}$$を求めよ。

解答形式

$A,B$は
$$
A = \fboxア \frac{\pi^\fboxイ}{\fboxウ} , \qquad B = \fboxエ \frac{\fboxオ \pi^\fboxカ}{\fboxキ}
$$となるので文字列「$\fboxア\fboxイ\fboxウ\fboxエ\fboxオ\fboxカ\fboxキ$」をすべて半角で1行目に答えてください。ただし$\fboxア\fboxエ$は$\texttt{+-}$のどちらか、$\fboxイ\fboxウ\fboxオ\fboxカ\fboxキ$は自然数であり、$\fboxオ$と$\fboxキ$は互いに素です。例えば$\displaystyle A=+\frac{\pi^{2}}{3},B=-\frac{5\pi^{7}}{11}$としたいときは+23-5711と回答してください。計算して-5688とはしないでください。

10月前

2

問題文

$AB=20,CD=23,AD=12,BC=31$ を満たす四角形 $ABCD$ について,三角形 $ABD$ の内心を $I_1$ とし,三角形 $BCD$ の内心を $I_2$ とします.
$I_1I_2$ と $BD$ の交点を $X$ とすると $DX=\dfrac{12}{31}$ となったとき,$BX$ の長さは互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ の値を解答してください.

解答形式

半角数字で解答してください.

除夜コン2023本選A2

shoko_math 自動ジャッジ 難易度:
10月前

3

問題文

正の実数 $a,b,c,d$ が $\Bigg\{\begin{aligned}
a+\dfrac{b}{4}+\dfrac{c}{9}+\dfrac{d}{16}=25 \\
\dfrac{49}{a}+\dfrac{64}{b}+\dfrac{81}{c}+\dfrac{100}{d}=36
\end{aligned}$ の $2$ 式を満たすとき,$d$ の最小値は最大公約数が $1$ の正の整数 $p,q,r$ を用いて $\dfrac{p-\sqrt{q}}{r}$ と表されるので,$p+q+r$ の値を解答してください.

解答形式

半角数字で解答してください.

10月前

2

問題文

へこみのない四角形 $ABCD$ の外側に正方形 $ABFE,BCHG,CDJI,DALK$ を描いたところ,$\triangle ALE=16,\triangle BFG=9,\triangle CHI=36$ となりました.このとき,$\triangle DJK$ の面積を求めて下さい.

解答形式

半角数字で解答してください.

No.04 平方根と有理数

Prime-Quest 自動ジャッジ 難易度:
9月前

3

問題

$(1)$ $1-\dfrac{2}{x}=\sqrt{2-\sqrt 3}$ のとき,$x^3=\dfrac{ax+b}{|x^2-20|}$ となる有理数 $a,b$ を求めよ.
$(2)$ $60|p-q\sqrt 3|\lt 1\leqq p-4\leqq 100$ を満たす整数 $p,q$ は存在するか.

解答形式

命題が真なら $|a+1|$,偽なら $|b+1|$ の値を半角数字で入力してください.

除夜コン2023予選C4

shoko_math 自動ジャッジ 難易度:
10月前

4

問題文

$8\times8$ のマス目に対し,上から $1$ 行目かつ左から $1$ 列目にあるマス目には黒を表にしてオセロの駒を置き, 残りの $63$ マスには隣り合うマスに置かれた2つの駒が同じ色を表にして置かれないようにオセロの駒を $1$ つずつ置きました.
このとき,「行もしくは列を $1$ つ選び,そこに置かれた $8$ つの駒を全て同時に裏返す」という操作を繰り返したところ,すべての駒が黒を表にして置かれました.
このときの操作回数としてあり得る最小の値を $m$ とおくとき,操作回数が $m$ であって,最終的にすべての駒が黒を表にして置かれるような操作方法の総数を求めてください.

解答形式

半角数字で解答してください.


問題文

下図において,黒線の図形は正十五角形であり,青線の長さは $8$ ,緑線の長さは $6\sqrt{5} - 2 + 2\sqrt{6}\sqrt{5 - \sqrt{5}}$ です.
このとき,赤線の長さは,正整数 $a,b,c,d,e,f,g$ (ただし,$c,d,e,g$ は平方因子を持たない)を用いて $a - b\sqrt{c} + (\sqrt{d} + \sqrt{e})\sqrt{f-\sqrt{g}}$ と表せるので,積 $abcdefg$ の値を解答してください.

解答形式

余分な空白や改行を入れずに,半角数字のみを用いて解答してください.

除夜コン2023問本選C1

shoko_math 自動ジャッジ 難易度:
10月前

3

問題文

お笑いコンビ「さや香」の新山くんは以下のような「見せ算」という演算「$*$」を考案しました.

[見せ算の計算法]
$0$ 以上 $4$ 以下の整数 $a,b$ に対し,$a*b=\Bigg{\{}\begin{aligned}
0\ (a=bのとき) \\
a\ (a>bのとき) \\
b\ (a<bのとき)
\end{aligned}$

とし,$a*b$ を「 $a$ と $b$ の『眼』」と呼ぶ.

$0,1,2,3,4$ を $6$ 個ずつ左右一列に並べて得られる $M=\dfrac{30!}{({6!})^5}$ 通りの数列のうち,左に位置する $2$ 数を消し,その $2$ 数の『眼』をこの数列の左に書き込むという操作を $29$ 回繰り返した時,最後に $3$ が残るような $30$ 個の数の並べ方の総数を $N$ とします.このとき,$\dfrac{N}{M}$ は互いに素な正の整数 $p,q$ を用いて $\dfrac{q}{p}$ と表せるので,$p+q$ の値を解答してください.

解答形式

半角数字で解答してください.

除夜コン2023予選N3

shoko_math 自動ジャッジ 難易度:
10月前

4

問題文

$2023$ や $1231$ のように $2$ と $3$ がこの順に連続して表れる $4$ 桁の正の整数(すなわち,$1000$ 以上 $9999$ 以下の整数)の総和を求めてください.

解答形式

半角数字で解答してください.

除夜コン2023予選C3

shoko_math 自動ジャッジ 難易度:
10月前

5

問題文

$5\times5$ のマス目の異なる $2$ つのマスにナイトの駒を $1$ つずつ置き,「ナイトの駒の動きに従って $2$ つの駒を同時に動かす」という操作を繰り返したところ,$2$ つの駒が同じマスに止まりました.
このとき,最初にナイトの駒を置いた $2$ マスの組み合わせとしてあり得るものの総数を求めてください.

解答形式

半角数字で解答してください.

No.01 展開と因数分解

Prime-Quest 自動ジャッジ 難易度:
10月前

5

問題

$(1)$ $4$ つの実数 $(10\pm\sqrt 2\pm 4\sqrt 3)^3+1$ の和と等しい整数の最大素因数を求めよ.
$(2)$ 方程式 $(2x^2-x)(2x^2-7x+6)=7$ の実数解 $x$ に対する $x^5-\dfrac{1}{x^5}$ の値を求めよ.

解答形式

$(1),(2)$ の和を半角数字で入力してください.

No.02 集合と要素の個数

Prime-Quest 自動ジャッジ 難易度:
10月前

3

問題

$(1)$ 集合 $S_n=\{nx\mid x^3\leqq 2x^2+5x-6\}$ に対し,整数 $k\notin\overline{S_1\cap S_2}\cup S_3$ は何個あるか.
$(2)$ $3$ 桁の素数は $200$ 個未満か.

解答形式

命題は真なら $1$,偽なら $0$ として,$(1),(2)$ の和を半角数字で入力してください.