座王001(C1)

shoko_math 自動ジャッジ 難易度: 数学 > 高校数学
2024年3月8日21:11 正解数: 6 / 解答数: 11 (正答率: 54.5%) ギブアップ数: 0
競技数学

全 11 件

回答日時 問題 解答者 結果
2024年3月26日17:30 座王001(C1) hairtail
正解
2024年3月26日17:30 座王001(C1) hairtail
不正解
2024年3月11日22:28 座王001(C1) nmoon
正解
2024年3月11日22:28 座王001(C1) nmoon
不正解
2024年3月9日8:21 座王001(C1) nmoon
不正解
2024年3月9日5:49 座王001(C1) J_Koizumi_144
正解
2024年3月9日2:05 座王001(C1) bzuL
正解
2024年3月9日1:49 座王001(C1) natsuneko
正解
2024年3月8日23:41 座王001(C1) yozora184
正解
2024年3月8日23:39 座王001(C1) yozora184
不正解
2024年3月8日23:38 座王001(C1) yozora184
不正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

座王001(G2)

shoko_math 自動ジャッジ 難易度:
8月前

10

問題文

$\triangle{ABC}$ の外接円を $O_1$ とし,辺 $CA$,辺 $CB$,円 $O_1$ に接する円を $O_2$ とします.また,円 $O_2$ と辺 $CA$ ,辺 $CB$,円 $O_1$ の接点をそれぞれ $P,Q,T$ とし,直線 $TP$ と円 $O_1$ の交点を ${R}(\ne{T})$ とし,直線 $TQ$ と円 $O_1$ の交点を $S(\ne{T})とします.$
$TA=23,TB=35,TC=57$ のとき,(四角形 $ARCS$ の面積):(四角形 $BSCR$ の面積)は互いに素な正の整数 $a,b$ を用いて $a:b$ と表されるので,$a+b$ の値を解答してください.

解答形式

半角数字で解答してください.

SMC100(問題75)

shoko_math 自動ジャッジ 難易度:
8月前

6

問題文

正 $7$ 角形 $ABCDEFG$ の外側に正 $6$ 角形 $ABPQRS$ を描きます.
このとき,$\angle{EGP}-\angle{GPR}$ の値は度数法で互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ の値を解答してください.

解答形式

半角数字で解答してください.

QMT002(自作問題1問目)

shoko_math 自動ジャッジ 難易度:
8月前

11

問題文

十万,一万,千,百,十,一の位がそれぞれ $a,b,c,d,e,f$ であるような $6$ 桁の整数を $A$ とし,十万,一万,千,百,十,一の位がそれぞれ $e,f,a,b,c,d$ であるような $6$ 桁の整数を $B$ とします.
相異なる $1$ 桁の整数 $a,b,c,d,e,f$ が $e>a>0$ を満たしながら動くとき,$A$ と $B$ の最大公約数の最大値を求めてください.

解答形式

半角数字で解答してください.

座王001(N1)

shoko_math 自動ジャッジ 難易度:
8月前

10

問題文

以下の[条件]を満たす $3$ 桁の正の整数(つまり,$100$ 以上 $999$ 以下の正の整数)の組 $(A,B)$ すべてに対し,$A+B$ の値の総和を解答してください.

[条件] $A^2$ の下 $3$ 桁は $B$ であり,$B^2$ の下 $3$ 桁は $A$ である.

解答形式

半角数字で解答してください.

座王001(N2)

shoko_math 自動ジャッジ 難易度:
8月前

13

問題文

正の整数 $n$ に対し,「 $n$ の各位の積の一の位」を $f(n)$ とします.
$f(1000)+f(1001)+f(1002)+\cdots+f(9998)+f(9999)$ の値を解答してください.

解答形式

半角数字で解答してください.

8月前

15

問題文

円 $O_1$,円 $O_2$ が点 $P$ で外接しており,円 $O_1$ 上の点 $Q$ における円 $O_1$ の接線を引いたところ円 $O_2$ と異なる $2$ 点で交わったので,その $2$ 交点を $Q$ に近い方から順に $A,B$ とします.
$AP=4,AB=6,BP=9$ となったとき,${PQ}^2$ の値は互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ の値を解答してください.

解答形式

半角数字で解答してください.

8月前

11

問題文

直線 $AT$ に点 $T$ で接する円 $\Gamma$ を描き,$A$ を通る直線 $m$と円 $\Gamma$ の交点を $A$ に近い方から順に $B,C$ とします.
また,$\angle{CAT}$ の二等分線と直線 $BT$,直線 $CT$ の交点をそれぞれ $D,E$ とします.
$BD=4,DE=8,EC=9$ となったとき,$\triangle{TBC}$ の面積を $S$ とすると,$S^2$ は互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表されるので,$a+b$ の値を解答してください.

解答形式

半角数字で解答してください.

座王001(A2)

shoko_math 自動ジャッジ 難易度:
8月前

11

問題文

実数 $x,y,z$ が
$\begin{cases}
x+y+z=\dfrac{7}{2}\\
x^2+y^2+z^2+3(xy+yz+zx)=14\\
x^2y+y^2z+z^2x+xy^2+yz^2+zx^2+2xyz=8
\end{cases}$
を満たすとき,$\dfrac{y^2}{x^2}+\dfrac{z^2}{y^2}+\dfrac{x^2}{z^2}$ の値として考えられるものの総和は互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ の値を解答してください.

解答形式

半角数字で解答してください.

座王001(サドンデス2)

shoko_math 自動ジャッジ 難易度:
8月前

8

問題文

三角形 $ABC$ の辺 $AB,AC$ 上に ${BC}\parallel{DE}$ となるよう $D,E$ をとり,さらに,$D,F,G,E$ がこの順に並ぶように点 $F,G$ を線分 $DE$ 上にとる.さらに,辺 $BC$ と直線 $AF,AG$ との交点をそれぞれ $H,I$ とする.
三角形 $ADF$,四角形 $FGIH$,$AEG$ の面積がそれぞれ $3,5,8$ であるとき,三角形 $ABC$ の面積の最小値は正の整数 $a,b$ および平方因子をもたない正の整数 $c$ を用いて $a+b\sqrt{c}$ と表せるので,$a+b+c$ の値を解答してください.

解答形式

半角数字で解答してください.

座王001(G1)

shoko_math 自動ジャッジ 難易度:
8月前

13

問題文

鋭角三角形 $ABC$ の垂心を $H$,外心を $O$ とし,$A$ から $BC$ に下ろした垂線の足を $D$ とします.
$OH=3,AH:HD=7:2$ であり,$\triangle{ABC}$ の外接円半径が $5$ であるとき,${OD}^2$ の値は互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ の値を解答してください.

解答形式

半角数字で解答してください.

座王001(サドンデス5)

shoko_math 自動ジャッジ 難易度:
8月前

18

問題文

$1,2,3,4,5,6,7,8,9$ を並べ替えてできる $9$ 桁の正の整数のうち $99$ の倍数であるものの最大値を求めてください.$\

解答形式

半角数字で解答してください.

座王001(C2)

shoko_math 自動ジャッジ 難易度:
8月前

7

問題文

$4\times9$ のマス目があり,$1$ つのマスの一辺の長さは $1$ とします.最も左下の点 $A$ から出発して,「線に沿って長さ $1$ だけ右または上または左に進む」という操作を繰り返して最も右上の点 $B$ にたどり着く経路のうち同じ線分を $2$ 回以上通過しないもの全てに対し,経路の長さの総和を求めてください.

解答形式

半角数字で解答してください.