KMTで使ったやつ②

nmoon 自動ジャッジ 難易度: 数学 > 高校数学
2024年3月18日17:15 正解数: 7 / 解答数: 11 (正答率: 63.6%) ギブアップ数: 1

問題文

三角形 $ABC$ の辺 $BC$ の中点を $M$ とし,辺 $AB,AC$ 上にそれぞれ点 $D,E$ をとると,以下が成立した:

$$\angle{DME}=90^{\circ},AD=6,DB=2,AE=7,EC=3$$

このとき,辺 $BC$ の長さの $2$ 乗を求めてください.

解答形式

非負整数で解答してください.


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

8月前

15

問題文

円 $O_1$,円 $O_2$ が点 $P$ で外接しており,円 $O_1$ 上の点 $Q$ における円 $O_1$ の接線を引いたところ円 $O_2$ と異なる $2$ 点で交わったので,その $2$ 交点を $Q$ に近い方から順に $A,B$ とします.
$AP=4,AB=6,BP=9$ となったとき,${PQ}^2$ の値は互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ の値を解答してください.

解答形式

半角数字で解答してください.

8月前

11

問題文

直線 $AT$ に点 $T$ で接する円 $\Gamma$ を描き,$A$ を通る直線 $m$と円 $\Gamma$ の交点を $A$ に近い方から順に $B,C$ とします.
また,$\angle{CAT}$ の二等分線と直線 $BT$,直線 $CT$ の交点をそれぞれ $D,E$ とします.
$BD=4,DE=8,EC=9$ となったとき,$\triangle{TBC}$ の面積を $S$ とすると,$S^2$ は互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表されるので,$a+b$ の値を解答してください.

解答形式

半角数字で解答してください.

座王001(C1)

shoko_math 自動ジャッジ 難易度:
8月前

11

問題文

半径が $1,2,3,4,5$ の同心円に半径 $5$ の円の直径を $1$ 本付け加えて出来る図形を一筆書きで描く方法は何通りあるかを求めてください.
ただし,同じ道でも向きが異なる一筆書きは異なるものとして数えるものとします.

解答形式

半角数字で解答してください.

座王001(G1)

shoko_math 自動ジャッジ 難易度:
8月前

13

問題文

鋭角三角形 $ABC$ の垂心を $H$,外心を $O$ とし,$A$ から $BC$ に下ろした垂線の足を $D$ とします.
$OH=3,AH:HD=7:2$ であり,$\triangle{ABC}$ の外接円半径が $5$ であるとき,${OD}^2$ の値は互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ の値を解答してください.

解答形式

半角数字で解答してください.

除夜コン2023予選C3

shoko_math 自動ジャッジ 難易度:
10月前

5

問題文

$5\times5$ のマス目の異なる $2$ つのマスにナイトの駒を $1$ つずつ置き,「ナイトの駒の動きに従って $2$ つの駒を同時に動かす」という操作を繰り返したところ,$2$ つの駒が同じマスに止まりました.
このとき,最初にナイトの駒を置いた $2$ マスの組み合わせとしてあり得るものの総数を求めてください.

解答形式

半角数字で解答してください.

10月前

3

問題文

円に内接する $8$ 角形 $ABCDEFGH$ が $\angle{A}=121^{\circ},\angle{B}=122^{\circ},\angle{C}=123^{\circ},\angle{D}=124^{\circ},\angle{E}=125^{\circ},\angle{F}=126^{\circ}$ を満たすとき,$\angle{G}$ の大きさを度数法で解答してください.

解答形式

半角数字で解答してください.

座王001(G2)

shoko_math 自動ジャッジ 難易度:
8月前

10

問題文

$\triangle{ABC}$ の外接円を $O_1$ とし,辺 $CA$,辺 $CB$,円 $O_1$ に接する円を $O_2$ とします.また,円 $O_2$ と辺 $CA$ ,辺 $CB$,円 $O_1$ の接点をそれぞれ $P,Q,T$ とし,直線 $TP$ と円 $O_1$ の交点を ${R}(\ne{T})$ とし,直線 $TQ$ と円 $O_1$ の交点を $S(\ne{T})とします.$
$TA=23,TB=35,TC=57$ のとき,(四角形 $ARCS$ の面積):(四角形 $BSCR$ の面積)は互いに素な正の整数 $a,b$ を用いて $a:b$ と表されるので,$a+b$ の値を解答してください.

解答形式

半角数字で解答してください.

約数の個数の方程式

kusu394 自動ジャッジ 難易度:
6月前

16

問題文

自然数 $x$ に対して, $d(x)$ で $x$ の正の約数の個数を表します.
$$d(4n-1)+d(4n)=8$$ を満たす自然数 $n$ について, 小さいほうから $7$ 個の総和を求めてください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

追記
=8 のところ =6 と書いてしまっていたため訂正しました
大変申し訳ありません

座王001(サドンデス2)

shoko_math 自動ジャッジ 難易度:
8月前

8

問題文

三角形 $ABC$ の辺 $AB,AC$ 上に ${BC}\parallel{DE}$ となるよう $D,E$ をとり,さらに,$D,F,G,E$ がこの順に並ぶように点 $F,G$ を線分 $DE$ 上にとる.さらに,辺 $BC$ と直線 $AF,AG$ との交点をそれぞれ $H,I$ とする.
三角形 $ADF$,四角形 $FGIH$,$AEG$ の面積がそれぞれ $3,5,8$ であるとき,三角形 $ABC$ の面積の最小値は正の整数 $a,b$ および平方因子をもたない正の整数 $c$ を用いて $a+b\sqrt{c}$ と表せるので,$a+b+c$ の値を解答してください.

解答形式

半角数字で解答してください.

初投稿

Butterflv 自動ジャッジ 難易度:
12月前

23

問題文

任意の二次関数$\ f\ $についてある$\ \theta \ (0\le \theta \le 2\pi)$があって,$\ xy$座標平面上で$\ y=f(x)\ $を$\ \theta \ $反時計回りに回転させたものを考える.$\ $これがある関数$\ g(x)\ $で$\ y=g(x)\ $と表せるときの$\ \theta\ $としてありうるものの総和を$\ S\ $とするとき$\ S\ $を超えない最大の整数を回答して下さい.

解答形式

整数で回答してください.

自作問題1

aonagi 自動ジャッジ 難易度:
7月前

18

問題文

一辺の長さが $1$ の立方体 $1800$ 個から構成される,長さ $10,12,15$ の辺からなる直方体があります.
このとき,直方体の対角線のうちの $1$ つについて,これが内部を通過する立方体の個数を求めてください.

ただし,立方体の内部とは,頂点や辺・面そのものを含まないものとして考えます.

解答形式

求めるべき値は非負整数値として一意に定まるので,これを解答してください.

Furret sequence 1

bzuL 自動ジャッジ 難易度:
11月前

14

問題文

「オ」「タ」「チ」の $3$ 種類の文字で構成される長さ $n$ の文字列に対して,オオタチ度を,その文字列の中で連続する $4$ 文字が「オオタチ」となっているようなものの数と定義します.
 たとえば「チタタオオタチオタチタオオオタチ」のオオタチ度は $2$ で,「チタオオチタオオチタオオ」のオオタチ度は $0$ です.
 長さが $n$ で構成する文字が $3$ 種類のため,文字列としては $3^n$ 種類のものが考えられます.これらのオオタチ度の相加平均を $f(n)$ とします.
 $f(n)$ が正整数になる最小の $n$ を解答してください.

解答形式

半角数字で解答してください.