縦 $5$ 列、横 $8$ 列、合計 $40$ 個の机があり、これらの上に合計 $8$ 冊の本を置くことを考えます。 どの縦・横の列にも最低 $1$ 冊の本が置かれた机のある本の置き方は何通りありますか? ただし、同じ列に本が置かれた机が複数あっても構いません。
非負整数を半角で入力してください。
解答に誤りがあったため再投稿
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
$1〜100$の数字が書かれた$100$面のさいころを$3$回投げて出た目を順に$x,y,z$とし、$a=x+y、b=y+z、c=z+x$と定めます。このとき、不等式$$\frac{1}{2} <\frac{ab+bc+ca}{a^2+b^2+c^2} $$が成り立つ確率を求めてください。
互いに素な非負整数$n,m$を用いて、$\frac{n}{m}$と表されるので、$n+m$の値を半角数字で入力してください。
$4\times4$ のマス目の各マスに $3,2,6$ のいずれかを書き込む方法のうち,どの横の行に書かれた $4$ 数の積も立方数であり,どの縦の列に書かれた $4$ 数の積も立方数であるような書き込み方は何通りあるかを求めてください. ただし,回転や裏返しにより一致する書き込み方も異なるものとして数えるものとします.また,$3,2,6$ のうち使わない数があっても構いません.
半角数字で解答してください.
$n$を正整数、$r$を$n$以下の非負整数として、$nCr$を$〈n,r〉$と表します。ここで、$n>2$であるとき、$$〈〈n,2〉,2〉$$が$5$の倍数とならないような$2$桁以下の正整数$n$の総和を求めてください。
半角数字で入力してください。
そらさんとあかつきさんは地点Aから東にある地点Bに向かって進みます。
そらさんは2秒間東に毎秒4m進み、1秒間西に毎秒2m進むを繰り返します。
あかつきさんは毎秒Xm東に進みます。
そらさんとあかつきさんは同時に地点Aを出発し、20秒後に同時に地点Bに到着しました。
Xはいくつですか?
Xは互いに素な自然数A,Bを用いてA/Bと表せるので、A+Bを回答してください。
$0$ でない相異なる実数 $a,b,c,d$ が以下の関係式を満たすとき,$a^2+b^2+c^2+d^2$ の値を求めてください. $\begin{cases} a^3-12a^2-34a+bcd=0\\ b^3-12b^2-34b+cda=0\\ c^3-12c^2-34c+dab=0\\ d^3-12d^2-34d+abc=0\\ \end{cases}$
一辺の長さが $1$ の立方体 $1800$ 個から構成される,長さ $10,12,15$ の辺からなる直方体があります. このとき,直方体の対角線のうちの $1$ つについて,これが内部を通過する立方体の個数を求めてください.
ただし,立方体の内部とは,頂点や辺・面そのものを含まないものとして考えます.
求めるべき値は非負整数値として一意に定まるので,これを解答してください.
下図は、直角二等辺三角形と正三角形と頂角が150°の二等辺三角形を組み合わせた図形です。直角二等辺三角形の面積が24㎠のとき、図形全体の面積を求めなさい。
単位は㎠(単位は書かなくてよい)、数字は半角で入力してください。 例)10
2つの正六角形を組み合わせた、図のような七角形があります。青で示した部分の面積が49、赤で示した部分の面積が28のとき、緑で示した三角形の面積を求めてください。
半角数字で解答してください。
$AB=AC=3$ なる $\triangle ABC$ がある.辺 $BC$ の $C$ 側の延長上に,$AD=5$ なる点 $D$ をとる.$\triangle ABD$ の外接円において,$B$ を含まない弧 $AD$ 上に,$DE=4$ なる点 $E$ をとる.直線 $CE$ と $\triangle ABD$ の外接円との交点のうち,$E$ でないものを $F$ としたら,$EF=\dfrac{48}{\sqrt{91}}$ となった.このとき, $$ BF=\dfrac{a}{b} $$ である.ただし,$a,b$ は互いに素な自然数である.
$\boldsymbol{\underline{a^{2}+b^{2}}}$ の値を求めよ.
図のような、一目盛りが1cmの方眼に書いた図形があります。三角形ABCと三角形ACEは合同で、角ADF=90°です。DFは何cmですか。
四捨五入して小数第2位まで、半角数字で答えてください。 例)$\frac{52}{3}$→17.33
$S=\{1,2,3,4,5,6\}$ とします.$S$ の相異なる部分集合 $A,B,C$ の組であって,$A\subset B\subset C$ を満たすものの個数を求めてください. (ただし,$A,B,C$ は空集合や $S$ に一致してもよいものとします.)
$a,b$を実数の定数とする。$x$についての方程式 $x^{10}+x^8+(1-2b)x^{6}-6x^4-2ax^3+b^2x^2+a^2+9=0$ の実数解を全て求めよ。また、その時の$a,b$の値を求めよ。
(x,a,b)=(1,1,1),(2,3,4)...という感じで半角で入力してください。(順不同) ±は使わないでください。 底ができるだけ小さくなるようにしてください。 また、m/n乗はa^(m/n)というふうに解答してください。例:3^(2/3),5^(7/8)など