TMCMC001(E)

Tiri7_Ma13a_ 自動ジャッジ 難易度: 数学
2024年6月22日21:00 正解数: 31 / 解答数: 52 (正答率: 59.6%) ギブアップ数: 2
この問題はコンテスト「TMCMC001」の問題です。

問題文

$ $ p,d,q,b,a,e,s の $7$ 文字を使い,$6$ 文字の文字列を作ることを考えます.(使わない文字が必ず $1$ 文字以上出てきます.)
$ $ 文字列において,$1,6$ 文字目,$2,5$ 文字目,$3,4$ 文字目が後述の対応する文字どうしになるようにする必要があります.
$ $ 対応する文字は以下のとおりです.

  • p と d
  • q と b
  • a と e
  • s と s

$ $ なお,d と p のように,対応する文字どうしであり指定された文字目に $2$ 文字がいれば文字列内で順序が入れ替わってもよいものとします.
$ $ また,この文字列内において,同じ文字を使えるのは $2$ 回までとします.
$ $ 以上の条件を全て満たした文字列は全部でいくつありますか?

解答形式

非負整数を半角で解答してください.


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

TMCMC001(D)

Tiri7_Ma13a_ 自動ジャッジ 難易度:
5月前

58

問題文

$ $ ある教室には,縦 $6$ 列,横 $3$ 列で横長の机が並んでおり,$1$ つの机ごとに横並びに $2$ つずつ座席があるため,$36$ 個の座席と $18$ 個の机があります.$A$ くん,$B$ くん,$C$ くんの $3$ 人が,それぞれ $36$ 個の座席から $1$ つずつ異なる座席を選び座ります.
$ $ ここで,以下の条件を満たしました.

  • $B$ くんは,$A$ くんの座っている座席のある机から縦の列で見たときに $3$ 列以上後ろの机にある座席のみに座る.例えば,$A$ くんが縦 $1$ 列目の机にある座席に座っている場合,$B$ くんは縦 $4,5,6$ 列目の机にある座席に座っていることになる.
  • 机の縦の列,横の列どちらで見たときも,$3$ 人は全員相異なる列の机にある座席に座っている.

$ $ このとき,$3$ 人の座席の座り方は全部でいくつありますか?

解答形式

非負整数を半角で解答してください.

TMCMC001(C)

Tiri7_Ma13a_ 自動ジャッジ 難易度:
5月前

60

問題文

$ $ $5$ 種類の大きさ $1,2,3,4,5$ の服がそれぞれ $3$ 枚ずつあり,合計 $15$ 枚にはすべてに相異なる色が着色されています.$A$ さん,$B$ さん,$C$ さんの $3$ 人は,これら $15$ 枚の服からそれぞれ $1$ 枚ずつ異なる服を選んで着ます.ここで,$3$ 人が着ることのできる服の大きさは以下の通りです.

  • $A$ さんは,大きさ $1,2,3,4,5$ 全てを着ることができる.
  • $B$ さんは,大きさ $1,2,3$ を着ることができる.
  • $C$ さんは,大きさ $3,4,5$ を着ることができる.

$ $ このとき,$3$ 人の服の選び方はいくつありますか?
$ $ ただし,$3$ 人全体で見て同じ服を選んでいても着ている人が異なる場合違う選び方として区別します.

追記:6/26
解説の誤字を修正しました。ご指摘ありがとうございます。

解答形式

非負整数を半角で解答してください.

TMCMC001(F)

Tiri7_Ma13a_ 自動ジャッジ 難易度:
5月前

51

問題文

$ $ $3×4$ で構成された $12$ マスのマス目があります.すべてのマスが,初期状態では白色になっています.これらのマスを,灰色あるいは黒色に塗ることを考えます.
$ $ マスを塗るためには持ち点を消費します.持ち点は初期状態では $12$ 点です.
$ $ マス目の色は,以下の通りに塗り替えることができます:

  • 持ち点を $1$ 消費して,任意の白色のマスを $1$ つ灰色にする.
  • 持ち点を $1$ 消費して,任意の灰色のマスを $1$ つ黒色にする.
  • 持ち点を $2$ 消費して,任意の黒色のマスを $1$ つ白色に戻す.

$ $ また,マス目を塗る上で以下を守る必要があります:

  • 全ての持ち点を過不足なく消費しなければならない.
  • 全ての持ち点を消費したとき,全てのマスが白色であってはならない.

$ $ このとき,全ての持ち点を消費した後のマス目の塗られ方は全部で何通りありますか?
$ $ ただし,反転・回転して一致するものは区別します.

解答形式

非負整数を半角で解答してください.

TMCMC001(B)

Tiri7_Ma13a_ 自動ジャッジ 難易度:
5月前

72

問題文

$ $ 正方形の中を等間隔に区切ってできた $6×6$ のマス目があります.正方形の中心を中心として点対称となるようにマス目を塗ることを考えます.
$ $ 正方形全体で $10$ マスちょうどを塗るとき,マス目の塗られ方は何通りありますか?ただし,反転・回転して一致するものは全て区別します.

解答形式

非負整数を半角で解答してください.

TMCMC001(A)

Tiri7_Ma13a_ 自動ジャッジ 難易度:
5月前

66

問題文

$ $ $1$ を $3$ つ,$2$ を $1$ つ,$7$ を $2$ つを全て使い,それらを並べ替えてできた長さ $6$ の文字列は全部でいくつありますか?
$ $ ただし,同じ文字は区別しません.

解答形式

非負整数を半角で解答してください.

素因数分解

lemonoilemon 自動ジャッジ 難易度:
7月前

25

問題文

$12$桁の整数$111111111111$の素因数の総和を求めてください.
但し,素因数の1つとして4桁の素数が含まれます.

解答形式

整数で答えてください.

B

Furina 自動ジャッジ 難易度:
5月前

75

問題文

一辺の長さが $4$ の正三角形 $ABC$ について,$BC$ の中点を $M$ とし,線分 $BC$ 上に $BD=1$ なる点 $D$ をとります.$3$ 点 $ABD$ を通る円と$3$ 点 $ACM$ を通る円との交点を $X$ とするとき,$AX$ の長さの $2$ 乗を求めてください.ただし,求める値は,互いに素な正整数 $a,b$ を用いて $\dfrac{b}{a}$ と表せるので,$a+b$ の値を解答してください.

解答形式

半角数字で解答してください.

PGC005 (A)

pomodor_ap 自動ジャッジ 難易度:
12日前

44

問題文

$BC=18$ かつ面積が $162$ なる三角形 $ABC$ について,重心を $G$,$G$ から $BC$ に下ろした垂線の足を $P$ とすると,三角形 $PGC$ の面積が $30$ となりました.$AC$ の長さの二乗を求めてください.

1を含んだ規則的な数列

Tiri7_Ma13a_ 自動ジャッジ 難易度:
8月前

50

問題文

$ $ 地理奈ちゃんは,$1$ を含んだ数列をいくつか思い浮かべようとしています.
$ $ そこで,以下のルールをすべて守った数列を,良い数列と呼ぶことにします:

  • $1$ 以上 $9$ 以下の整数から $3$ つを選んでいる数列である.
  • その数列は公差が $0$ でない等差数列である.
  • 数列のどこか $1$ 項に必ず $1$ を含んでいる.

$ $ この時,良い数列は全部でいくつありますか?

解答形式

非負整数を半角で解答してください.

素数の確率問題

koukiyayo 自動ジャッジ 難易度:
7月前

34

問題文

$1$ 以上 $100000$ 以下の整数から無作為に1つ選ぶとき,全ての桁の数がそれぞれ素数になる確率は,互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せます.$a+b$ を解答してください.

例えば,$23$ は各桁の数が $2$ と $3$ で,これは全ての桁の数が素数になります.
$17$ は各桁の数が $1$ と $7$ ですが,$1$ は素数ではないので全ての桁の数が素数にはなりません.

回答形式

非負整数を半角で回答してください。

問題文を一部変更しましたが答える内容は変わっていません。

8月前

80

問題文

$ $ 地理奈ちゃんは,$10$ 面サイコロを $4$ つ持っており,それを $4$ つ全て同時に $1$ 回振ることを考えます.ここでの $10$ 面サイコロは,$1$ 以上 $10$ 以下の整数の目が同様に確からしい確率で $1$ つ出るサイコロとします.
$ $ また,サイコロの出目により,それぞれのサイコロに対して,成功数を以下のように定義します.

  • 出目が $1$ のとき $2$
  • 出目が $2$ 以上 $7$ 以下のとき $1$
  • 出目が $8$ 以上 $9$ 以下のとき $0$
  • 出目が $10$ のとき $-1$

$ $ この時,$4$ つのサイコロを振って,その成功数の合計が $0$ 以下になる確率は,互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表されるので,$a+b$ を解答してください.

【追記】
難しすぎるという意見をいただいたので難易度を2→3に変更しました。

解答形式

非負整数を半角で解答してください.

PGC005 (B)

pomodor_ap 自動ジャッジ 難易度:
12日前

34

問題文

$BC=123, \angle B=90^{\circ}$ なる三角形 $ABC$ について,内心を $I$,$\angle A$ 内の傍心を $J$ とすると,四角形 $ABIC$ は三角形 $BCJ$ よりも面積が $246$ 大きくなりました.$AB$ の長さを求めてください.