E

Nyarutann 自動ジャッジ 難易度: 数学 > 競技数学
2024年8月14日22:00 正解数: 21 / 解答数: 68 (正答率: 30.9%) ギブアップ数: 1
この問題はコンテスト「Quick Solving Contest」の問題です。

問題文

$a, b$ を整数とします.$x$ についての方程式
$$
x^2+ax+b=0
$$について,$a+b=k$ となるすべての $(a, b)$ の組についてそれぞれの方程式を解いていくと,方程式が整数解をもつ(重解含む)ような $(a, b)$ の組が $4$ 種類のみ存在しました.$0≦k≦20$ としたとき, $k$ としてありうる値の総和を求めてください.

解答形式

半角数字で解答してください。


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

C

Nyarutann 自動ジャッジ 難易度:
5月前

51

問題文

$1$ 辺の長さが $10$ である正方形 $ABCD$ の内部に点 $P$ をとると,$△ACP$ と $△BDP$ の面積がどちらも $10$ になりました.$P$ から $AB$ に下ろした垂線の足を $E$ としたとき,$AE$ の長さとしてありうる値の総積を求めてください.

解答形式

半角数字で解答してください。

H

poino 自動ジャッジ 難易度:
5月前

32

問題文

$$2^p+q^2=5r$$
を満たす $100$ 以下の素数の組 $(p,q,r)$ 全てにおいて,$pqr$ の総和を求めてください.

解答形式

半角数字で解答してください.

F

poino 自動ジャッジ 難易度:
5月前

32

問題文

通常のサイコロを,素数の目が $2$ 回出るまで振り続けます.振った回数が $10$ 以下の素数である確率は互いに素な正整数 $p,q$ を用いて $\dfrac{p}{q}$ と表せるので,$p+q$ を解答してください.
通常のサイコロとは,$1$ から $6$ までの目が存在し,それらが等確率に出現するサイコロを指します.

解答形式

半角数字で解答してください.

D

poino 自動ジャッジ 難易度:
5月前

58

問題文

正整数 $a,b$ の最大公約数は $12$ ,最小公倍数は $360$ でした.このとき $(a,b)$ としてあり得る組すべてについて $a+b$ の総和を求めてください.

解答形式

半角数字で解答してください.

B

poino 自動ジャッジ 難易度:
5月前

51

問題文

赤いボールと青いボールがそれぞれ十分に入っている袋から $50$ 個のボールを取り出して一列に並べました.このとき,次の条件を満たす取り出し方において,取り出した青いボールの個数としてあり得る値の総和を求めてください.
 ・連続する $3$ 個のボールの少なくとも $1$ つは赤いボールである.

解答形式

半角数字で解答してください.

G

poino 自動ジャッジ 難易度:
5月前

40

問題文

円に内接する四角形 $ABCD$ の対角線の交点を $P$ としたとき,
$$AB=14\, , AP=13\, ,AD=16\, ,BP=PD$$
が成り立ちました.このとき $AC$ の長さを求めてください.ただし求める答えは互いに素な正整数 $p,q$ を用いて $\dfrac{p}{q}$ と表せるので,$p+q$ を解答してください.

解答形式

半角数字で解答してください.

A

poino 自動ジャッジ 難易度:
5月前

48

問題文

実数 $a,b$ が $a+b=10$ を満たすとき,$a^3+b^3$ の最小値を求めてください.

解答形式

半角数字で解答してください.

整数問題(2)

tsukemono 自動ジャッジ 難易度:
5月前

35

問題文

$\frac{n}{144}$が$1$より小さい既約分数になるような自然数$n$の個数を求めよ。

解答形式

半角算用数字で答えてください。

bMC_C

bzuL 自動ジャッジ 難易度:
6月前

31

問題文

凸五角形 $ABCDE$ は以下を満たします.
$$
\begin{cases}
AB=BC=CD=DE \\\\
2\angle{BAE} = \angle{CBA}\\\\
2\angle{ECA} = \angle{AEC} = \angle{BAE} + 30^{\circ}
\end{cases}
$$
このとき,互いに素な正整数 $a,b$ を用いて $\angle{EDB}=\bigg(\dfrac{a}{b}\bigg)^{\circ}$と表すことができるので,$a+b$ を答えてください.

解答形式

半角数字で解答してください.

ΠMC002 Pre

Furina 採点者ジャッジ 難易度:
14月前

26

問題文

$\lfloor\pi\rfloor$ を求めてください.

解答形式

半角数字で解答してください.

KOTAKE杯001(O)

MrKOTAKE 自動ジャッジ 難易度:
5月前

32

問題文

三角形$ABC$の重心を$G$とすると$AB=5,AC=7,BG=2$であった.
このとき$CG$の長さの$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯001(R)

MrKOTAKE 自動ジャッジ 難易度:
5月前

22

問題文

外心を$O$とする三角形$ABC$があり線分$BC$上に点$D$をおくと以下が成立した.
$AD=CD,BD-CD=15,OB=24,OD=9$
このとき$AB$の長さを解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.