方程式

katsuo.tenple 自動ジャッジ 難易度: 数学 > 高校数学
2024年8月23日0:18 正解数: 3 / 解答数: 3 (正答率: 100%) ギブアップ不可

問題文

方程式x⁶−6x⁵+15x⁴−47x³+15x²−6x+1=0の実数解を求めて下さい。

解答形式

正の整数a.b.cを用いて$\frac{b±√c}{a}$の形で表せられるので、a+b+cの値を半角で解答して下さい。


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

タイル塗り

G414xy 自動ジャッジ 難易度:
4月前

5

問題文

縦4列、横4行の16マスのうち、いくつかに色を塗ります。塗られるマスの数が列ごとに相異なり、行ごとに相異なる(但し、列と行で塗られる数が一致しても良い)、場合、塗り方は何通りありますか?

解答形式

半角数字で入力してください。

初等幾何

katsuo.tenple 自動ジャッジ 難易度:
4月前

7

問題文

AB=ACなる二等辺三角形ABCにおいて、点Aから下ろした垂線の足をD、三角形ABCの外心.垂心をそれぞれO.Hとする。
AH:HD=119:25、OH=138、BC=480のとき、
ABの長さを求めよ。

解答形式

半角で回答して下さい。

KOTAKE杯001没問①

MrKOTAKE 自動ジャッジ 難易度:
4月前

2

問題文

三角形$ABC$の内心を$I$とし直線$AI$と三角形$ABC$の外接円の交点のうち$A$でないものを$M$, 直線$AM$と$BC$の交点を$D$,$A$から $BC$への垂線の足を$H$とすると$AD=4, BH=DM=2 $であった. このとき$CD$の長さは正の整数$a,b$を用いて$\sqrt{a} -b$と表せるので,$ a+b$を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

読み間違いによる問題

katsuo.tenple 自動ジャッジ 難易度:
4月前

16

問題文

AB=36, AC=24の△ABCがあり線分ABを2:1に内分する点D, 線分ACを3:1に内分する点EをとりBEとCDの交点をPとするとAP=14であった.
このときBCの長さの2乗を求めよ。

解答形式

例)半角で解答して下さい。

除夜コン2023予選A2

shoko_math 自動ジャッジ 難易度:
12月前

15

問題文

実数 $x,y$ が $\bigg\{\begin{aligned}
20x+12y=20 \\
23x+31y=24
\end{aligned}$ の $2$ 式を満たすとき,$2023x+1231y$ の値を求めて下さい.

解答形式

半角数字で解答してください.

なんかの和

YoneSauce 自動ジャッジ 難易度:
3月前

3

問題文

$$ \sum _{k=0}^{2024} \dfrac{{}_{2024}\mathrm{C}_{k}}{2k+1}(-1)^{k}$$
は互いに素な二つの整数 $p,q$ を用いて $\dfrac{p}{q}$ と表せます. $p$ は $2$ で最大何回割り切れますか?

解答形式

非負整数を半角数字で答えてください

幾何

katsuo_temple 自動ジャッジ 難易度:
2月前

4

問題文

$∠B=60°$を満たす鋭角三角形$ABC$について、その内接円が$AC,AB$にそれぞれ$D,E$で接している。$∠B$の二等分線と直線$DE$の交点を$F$とすると以下が成立した。
$$
AB=4 CF=3
$$
$F$を通り$AB$と平行な直線と$AC$の交点を$G$とするとき、$CG²$の値を求めてください。

解答形式

半角で解答してください。

KOTAKE杯001没問②

MrKOTAKE 自動ジャッジ 難易度:
4月前

3

問題文

三角形$ABC$の内心を$I$,直線$AI$と$BC$の交点を$D$とすると$AI=CI=CD=6 $であった. このとき$AC$の長さは正の整数$a,b $を用いて$ \sqrt{a} +b$と表せるので, $a+b$を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

300G

MrKOTAKE 自動ジャッジ 難易度:
5月前

3

問題文

三角形$ABC$があり,また点$C$を通る点$B$で$AB$に接する円$O$がある.円$O$上でありかつ
三角形$ABC$の内部に$BD=CD$となる点$D$をとり$AC$と円$O$の交点のうち$C$でないものを$E$とおくと
$AB=15,BC=10,DE=16$であった.このとき$AC$の長さの$2$乗は互いに素な正整数$a,b$によって$\frac{a}{b} $と表されるので$a+b$の値を解答してください.
ただし点$A,C,E$は$ACE$の順に一直線上に並んでいるものとする.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

中線と垂線

kusu394 自動ジャッジ 難易度:
4月前

4

問題文

$\angle ABC $ と $\angle BCA$ が鋭角であるような $\triangle ABC$ について,辺 $BC$ の中点を $M$ とします.また,$M$ から辺 $AB,AC$ におろした垂線の足をそれぞれ $P, Q$ とすると、線分 $AM, BQ, CP$ が一点で交わります.

$$ AB = 12, \ \ BC= 20 $$

のとき,$\triangle ABC$ の面積の二乗としてありうる値の総和を解答してください。

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

2022文化祭

Kta 自動ジャッジ 難易度:
5日前

2

問題文

三角形 $ABC$ について,辺 $BC,CA,AB$ の中点をそれぞれ $D,E,F$ とし,三角形 $ABC, DEF$ の垂心をそれぞれ $H_1, H_2$ とすると,以下が成立しました.$$H_1H_2=3\sqrt{3},\quad DH_2=1,\quad \angle{H_1H_2D}=150^{\circ}$$このとき,三角形 $ABC$ の面積の $2$ 乗の値を求めてください.

解答形式

半角数字で入力してください。

内接円の半径

nepia_nepinepi 自動ジャッジ 難易度:
1日前

3

問題文

半径$3$の円に内接する六角形$ABCDEF$ は以下の2つの条件をみたします:

四角形$ABDE, BCEF,CDFA$は長方形
周長が$15$

このとき,三角形$ACE$の内接円の$\textbf{半径}$を求めてください。

解答形式

答は非負整数$a,b$を用いて$\frac{a}{b}$と表されるので$a+b$の値を半角数字で答えてください。