時刻a時b分について、100a+b.60a+bがどちらも平方数になるような時刻について、 abの総和を求めよ。 但し0時00分から23時59分までとする。
半角で解答して下さい。
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
AB=36, AC=24の△ABCがあり線分ABを2:1に内分する点D, 線分ACを3:1に内分する点EをとりBEとCDの交点をPとするとAP=14であった. このときBCの長さの2乗を求めよ。
例)半角で解答して下さい。
4a²+b²+c²=d²を満たす素数の組について、 abcdの総和を求めよ。
半角で答えて下さい。
5進数で表された[2024]を2進数で表せ。
数字のみでOK
正整数 $x, y, z$ が以下の等式を同時にみたすとき,積 $xyz$ の値としてあり得るものの総和を求めてください.
$$x + y + z = 48,x^2 + y^2 + z^2 = 1110$$
半角英数にし,答えとなる正整数値を入力し解答して下さい.
一辺の長さが $5$ の正方形 $ABCD$ の辺 $AB$ 上(端点は除く)に点 $P$ をとります.三角形 $ACP$ の外接円と三角形 $BDP$ の外接円が $P$ でない点 $Q$ で交わり,$DQ=4$ となりました.このとき,線分 $PQ$ の長さを求めてください.ただし,求める長さは,互いに素な正整数 $a,c$ および平方因子をもたない正整数 $b$ を用いて $\dfrac{a\sqrt{b}}{c}$ と表されるので,$a+b+c$ の値を解答してください.
半角数字で入力してください。
△ABCの内心をIとし直線AIと△ABCの外接円の交点のうちAでないものをM, 直線AMとBCの交点をD, Aから BCへの垂線の足をHとするとAD=4, BH=DM=2 であった. このときCDの長さは正の整数a,bを用いて√a-bと表せるので, a+bを解答してください.
答えは正の整数値となるので, その整数値を半角で入力してください.
整数$x, y, z$は$0<x<28,0<y, 0\leq z<20$ と $37x-13y=2z$ を共に満たします。このような整数の組$(x,y,z)$はいくつあるでしょう?
$2^{p}+7^{q}=r^{p+q-r}$を満たす素数の組$(p,q,r)$をすべて求めよ.
文字列$pqr$を,半角数字で解答してください.解が複数ある場合は, (1) $p$の値が小さい順 (2) $p$の値が等しい組は,$q$の値が小さい順 (3) $p,q$の値がともに等しい組は,$r$の値が小さい順 に,1行に1つずつ書いてください.
どなたか素数に限らない整数解を全て求めてくださるとありがたいです.
四角形 $ABCD$ について,線分 $BD$ 上に点 $E$ を取ると,$AE=BD$ で,角 $EAD=$ 角 $AED=$ 角 $EBC=$ 角 $BCE=40°$ が成り立ちました.このとき角 $BDC$ は何度ですか?
半角数字で解答してください.
$\angle B$ が鋭角である三角形 $ABC$ がある.いま,$\angle A$ の二等分線と辺 $BC$ との交点を $D$ とし,$D$ から辺 $AB$ に下ろした垂線の足を $H$ とする.$AH = 1944, HB = 2, AC = 2023$ がそれぞれ成り立つとき,辺 $BC$ の長さを求めよ.
四角形 $ABCD$ について,角 $DBC=20°$,角 $BDC=90°$,角 $ADB=40°$,$AD:BC=1:2$ が成り立ちました.このとき角 $ABD$ は何度ですか?
半角数字で解答して下さい.
△ABCがあり,また点Cを通る点BでABに接する円Oがある.円O上でありかつ △ABCの内部にBD=CDとなる点DをとりACと円Oの交点のうちCでないものをEとおくと AB=15 BC=10 DE=16であった.このときACの長さの2乗は互いに素な正整数a,bによってa/bと表されるのでa+bの値を解答してください. ただし点A,C,EはACEの順に一直線上に並んでいるものとする。