全 7 件
感想を投稿してみましょう!この感想は正解した人だけにしか見えません!
この問題を解いた人はこんな問題も解いています
縦4列、横4行の16マスのうち、いくつかに色を塗ります。塗られるマスの数が列ごとに相異なり、行ごとに相異なる(但し、列と行で塗られる数が一致しても良い)、場合、塗り方は何通りありますか?
半角数字で入力してください。
$p^2-pq-q^2+p+q=0$ を満たす素数の組 $(p,q)$ すべてについて,$p+q$ の総和を求めてください.
$\angle{A} = 60^{\circ}$ なる三角形 $ABC$ の内心を $I$,外心を $O$ とする.直線 $IO$ と直線 $BC$ の交点を $D$ とし,直線 $AD$ と三角形 $ABC$ の外接円との交点を $E(\not = A)$ とすると,以下が成立した:
$$EI = 23 , IO = 18$$
このとき,線分 $AI$ の長さは,互いに素な正整数 $a,b$ を用いて$\displaystyle\frac{a}{b}$ と表されるので,$a + b$ を解答してください.
$AB<AC$ なる三角形 $ABC$ について,$C$ を通り $B$ で直線 $AB$ に接する円 $\gamma$ と線分 $AC$ の $C$ でない交点を $D$,$D$ を通り $A$ で直線 $AB$ に接する円 $\omega$ と $\gamma$ の $D$ でない交点を $E$ とします.いま,三角形 $ABC$ の外心を $O$ とすると,$$OD=OE, DE=2, BC=11$$ が成り立ちました.線分 $AC$ の長さの二乗を求めてください.
三角形 $ABC$ について,辺 $BC,CA,AB$ の中点をそれぞれ $D,E,F$ とし,三角形 $ABC, DEF$ の垂心をそれぞれ $H_1, H_2$ とすると,以下が成立しました.$$H_1H_2=3\sqrt{3},\quad DH_2=1,\quad \angle{H_1H_2D}=150^{\circ}$$このとき,三角形 $ABC$ の面積の $2$ 乗の値を求めてください.
三角形$ABC$の内心を$I$,直線$AI$と$BC$の交点を$D$とすると$AI=CI=CD=6 $であった. このとき$AC$の長さは正の整数$a,b $を用いて$ \sqrt{a} +b$と表せるので, $a+b$を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
4a²+b²+c²=d²を満たす素数の組について、 abcdの総和を求めよ。
半角で答えて下さい。
$p^{2}q^{3}+r^{2}=s^{4}$ を満たす素数の組 $(p,q,r,s)$ は $n$ 組あり,それぞれの組について $S=p+q+r+s$ を求めると,$S$ の総積は $N$ である. $n$ および $N$ の値を求めよ.
一行目に $n$ の値を,二行目に $N$ の値を,それぞれ半角数字で解答してください.
内接四角形ABCDとその対角線の交点Mについて、図のような条件が与えられたとき、線分ACの長さを求めてください。
半角数字で解答してください。
図の条件の下で,線分 $AB$ の長さを求めてください. ※orthocenter:垂心,circumcenter:外心
$AB^2$ の値は互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ の値を解答してください.
$1998^{2024}$の下$2$桁を求めよ。
1行目に半角整数で入力してください。
$p,q$を素数、$n$を整数とします。 $$ p^{4}+2q^{2}-2^{n}=635 $$ を満たす$p,q,n$の組$(p,q,n)$を全て求めてください。
$p+q+n$の値の総和を半角で解答してください。