Loading [MathJax]/jax/output/CommonHTML/jax.js

整数

kiriK 自動ジャッジ 難易度: 数学
2024年10月22日20:00 正解数: 5 / 解答数: 22 (正答率: 22.7%) ギブアップ数: 0
この問題はコンテスト「KP杯2nd 作問ミスがあったため問題を一部変えました」の問題です。

XXk(X)
4A,Bk(A)k(B)=AB=n(n2)
A
半角数字のみで答えよ


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

連続する整数の積

noname 自動ジャッジ 難易度:
3月前

8

nを正の整数とします。連続する10個の整数の積n(n+1)(n+2)(n+3)(n+9)20253で割り切れるようなnとしてあり得る最小のものを求めてください。

解答形式

nの値を半角で入力してください。

整数

kiriK 自動ジャッジ 難易度:
7月前

14

f(x)=22xx1
とする。このとき、
f(1)+f(2)+f(3)++f(2024)=A
とすると、Aの一の位の数字は何になるか。

C. 地雷

G414xy 自動ジャッジ 難易度:
7月前

13

問題文

4x4のマス目のうち、0個以上のマスを選んで1つずつ地雷を置き、すべてのマスに周囲8マス(自身を含まない)の地雷の数を書きます。
地雷を置くすべてのパターンにおいて書かれている数字の総和を求めてください。

解答形式

半角数字で入力してください。

下位5桁

Ultimate 自動ジャッジ 難易度:
12月前

7

問題文

101^100の下位5桁(万の位まで)を求めよ。

解答形式

半角でお願いします。


問題文

一辺の長さが1である正方形を n 個、頂点が合うように辺同士でつなげてできる図形を n-オミノ とする。ただし、n=1 の場合は1つの正方形である。また、n-オミノが多角形をなすとき(n-オミノで囲まれた領域が存在しないとき)、これを n-オミノ多角形 とする。

Snn-オミノ多角形であるとき、Snの辺の数が2024となるような n の最小値を求めよ。

解答形式

答えは整数となるので、半角で入力してください。

B. 8分割

G414xy 自動ジャッジ 難易度:
7月前

18

問題文

4x4のマス目を1x2のタイル8枚で敷き詰める方法は何通りありますか?

解答形式

半角数字で入力してください。

D. ループ

G414xy 自動ジャッジ 難易度:
7月前

75

問題文

4x4のマスのうち1個以上に、対角線を1本ずつ引いたとき、全ての対角線がループの一部分であるものは何通りですか?
但し、「ループの一部分である」とは、
全ての対角線の端が、ちょうど1つの別の対角線の端と同位置にあることを意味します。

解答形式

半角数字で入力してください。

Reverse digits (学コン2024-12-3)

Lim_Rim_ 自動ジャッジ 難易度:
53日前

5

問題文

10の倍数でない正の整数 n に対し, f(n)は, 十進法表示で n1 の位から逆の順番で読んで得られる正の整数として定めます. たとえばf(123456789)=987654321です. n+f(n)が81の倍数となるような十進法で10桁のnの個数を解答してください.

備考

本問は大学への数学2024年12月学コン3番に掲載されている自作問題です.

A. 14分割

G414xy 自動ジャッジ 難易度:
7月前

8

問題文

4x4のマス目を境界線で区切り、14分割する方法は何通りありますか?

解答形式

半角数字で入力してください。

整数

kiriK 自動ジャッジ 難易度:
7月前

16

f(x,n)=x2n1x2n
f(a,b)f(c,d)
a,b,c,d2abcd

積100万へのみちしるべ

kusu394 自動ジャッジ 難易度:
12月前

12

問題文

3 つの自然数を積が 1000000 となるように選ぶ方法は何通りありますか.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

追記:
回答いただいた内容的に, 3 つの自然数を区別するかどうかがわかりにくかったと思われるので追記します.
この問題では 3 つの自然数は区別しません. すなわち, (1,10,100000)(10,1,100000) のように
並び替えただけの組は同一のものとみなします.

約数の個数の方程式

kusu394 自動ジャッジ 難易度:
12月前

17

問題文

自然数 x に対して, d(x)x の正の約数の個数を表します.
d(4n1)+d(4n)=8 を満たす自然数 n について, 小さいほうから 7 個の総和を求めてください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

追記
=8 のところ =6 と書いてしまっていたため訂正しました
大変申し訳ありません