座標平面上に点 P_k, Q_k を以下の規則に従ってとる。各試行においてサイコロを投げ、出た目を m = {1, 2, 3, 4, 5, 6} とする。
• 試行回数 n が奇数 (n = 2k - 1) のとき:
点 P_k (cos 2π/m, sin 2π/m)
• 試行回数 n が偶数 (n = 2k) のとき:
点 Q_k (cos -2π/m, sin -2π/m)
(1) n = 1, 2, 3, 4 回目のサイコロの目が順に 1, 4, 3, 6 であったとき、4点 P_1, Q_1, P_2, Q_2 が作る四角形の面積 S を求めよ。
(2) n = 4 のとき、出現した4点が正方形となる確率を求めよ。
(3) n 回の試行で得られた点集合を V_n = {P_1, Q_1, ..., P_k, Q_k} (ただし n = 2k または 2k - 1) とする。V_n から異なる4点を選んで作れる四角形の面積を S とし、同一の V_n 内における S の最大値を Smax、最小値を Smin とする。
このとき、比 R = Smax / Smin について、以下の問いに答えよ。
(i) 出目の組み合わせによって、比 R が最大値を取り得る最小の試行回数 N を求めよ。
(ii) n = N のとき、R が最大値をとる確率 P を求めよ。
記述もお願いします

$AB=AC$,$\angle BAC=120^{\circ}$ である二等辺三角形 $ABC$ があり,点 $D,E$ は線分 $AB,BC$ をそれぞれ $3:1$ に内分している.点 $P$ が辺 $AC$ 上を動くとき,線分の長さの和 $DP+PE$ が最小となるような線分の長さの比 $AP:PC$ を,最も簡単な整数の比で求めよ.
解答は,互いに素な正整数 $a,b$ を用いて $a:b$ と表せます.1行目に $a$ の値を,2行目に $b$ の値を,それぞれ半角数字で解答してください.