典型的な最小問題

miq 自動ジャッジ 難易度: 数学 > 中学数学
2023年9月18日7:26 正解数: 9 / 解答数: 10 (正答率: 90%) ギブアップ数: 0
最小問題 解法多数 図形

全 10 件

回答日時 問題 解答者 結果
2023年11月24日22:12 典型的な最小問題 rankturnip
正解
2023年11月10日16:16 典型的な最小問題 MARTH
正解
2023年11月1日23:37 典型的な最小問題 natsuneko
正解
2023年11月1日21:39 典型的な最小問題 sdzzz
正解
2023年10月27日10:26 典型的な最小問題 SigmaArf
正解
2023年10月19日9:12 典型的な最小問題 Ate8128
正解
2023年10月15日13:11 典型的な最小問題 mochimochi
正解
2023年9月25日18:15 典型的な最小問題 nakakun
正解
2023年9月24日18:28 典型的な最小問題 ゲスト
不正解
2023年9月18日15:39 典型的な最小問題 naoperc
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

交わる円と三角形

tb_lb 自動ジャッジ 難易度:
2月前

16

【補助線主体の図形問題 #115】
 今週の図形問題です。今回は重めの問題にしてみました。とはいえ、補助線が活躍するのはいつも通りです。じっくり腰を据えて挑戦してください!

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

4月前

14

【補助線主体の図形問題 #109】
 今週の図形問題です。今回はシンプルな見た目だけに、補助線が大いに活躍します。その分というわけではありませんが、計算は重めです。ぜひじっくりとお楽しみください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

12月前

8

問題文

図の条件の下で、$AB^2+BC^2+CD^2+DA^2$ の値を求めてください。

解答形式

半角数字で解答してください。

2024②

seven_sevens 自動ジャッジ 難易度:
39日前

6

問題文

$[\sqrt[11111]{2024!}]$を求めよ。ただし、$\log_{10}2=0.3010$、$\log_{10}3=0.4771$とする。

解答形式

数字のみを記入してください。

3つの正九角形の求角

tb_lb 自動ジャッジ 難易度:
6月前

9

【補助線主体の図形問題 #099】
 今週の図形問題は、通算99問目ということで正九角形を取り上げてみました。タネがわかれば余裕で暗算処理可能です。まずは紙&筆記具を使わずに頭の中で補助線を思い浮かべながら挑戦してみてください。

解答形式

${\renewcommand\deg{{}^{\circ}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。角度は弧度法ではなく度数法で表すものとします。
(例) $12\deg$ → $\color{blue}{12.00}$  $\frac{360}{7}^{\circ}$ → $\color{blue}{51.43}$
 入力を一意に定めるための処置です。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

Combination

Gauss 自動ジャッジ 難易度:
24月前

12

問題文

$$
\sum_{k=1}^{10} {}_{10}{\mathrm{C}}_{k}\cdot9^k\cdot k
$$

解答形式

半角数字で入力してください。

見掛け倒し

mahiro 自動ジャッジ 難易度:
10日前

12

問題文

$2^{20}!!$ は $2$ で何回割り切れますか?

解答形式

半角数字でお答え下さい。
計算機はご自由にお使いください。

自作問題1

mahiro 自動ジャッジ 難易度:
38日前

12

問題文

$$\angle{ADB}=\angle{ADC}=\angle{CDB}=90^°$$なる四面体 $ABCD$ の外接球に関して、体積を $V$ 表面積を $S$ としたとき、非負整数 $p$ を用いて、$V=p\pi,S=p\pi$ が成り立ちました。
このとき、四面体 $ABCD$ の体積の最大値の2乗を求めてください。

解答形式

半角数字で入力して下さい。

求長問題15

Kinmokusei 自動ジャッジ 難易度:
2年前

9

問題文

内接四角形ABCDとその対角線の交点Mについて、図のような条件が与えられたとき、線分ACの長さを求めてください。

解答形式

半角数字で解答してください。

円と菱形

tb_lb 自動ジャッジ 難易度:
36日前

7

【補助線主体の図形問題 #121】
 今週の図形問題です。補助線が活躍するのはいつも通りで、さらに、手慣れた方なら暗算で解けてしまうかもしれません。ぜひ幅広く挑戦してもらえたら、と思います。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。


【補助線主体の図形問題 #048】
 先週は傍心がらみの求長問題をお送りしましたが、今週は内心と外心の両方が登場する求角問題にしてみました。暗算でも十分処理可能な解法も存在しています。五心の織り成す関係をお楽しみください。

解答形式

${\renewcommand\deg{{}^{\circ}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。角度は弧度法ではなく度数法で表すものとします。
(例) $12\deg$ → $\color{blue}{12.00}$  $\frac{360}{7}^{\circ}$ → $\color{blue}{51.43}$
 入力を一意に定めるための処置です。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

自作2

mahiro 自動ジャッジ 難易度:
12日前

9

問題文

$${\displaystyle6\cdot\prod_{q=3}^{2023}\log_{q-1}q^{q+1}}$$は $1$ ではない非負整数 $k,l,m,n$ を用いて ${k! \cdot \log_lm^n}$と示されるので、$klmn$ の最小値を求めて下さい。

解答形式

半角数字で入力して下さい