nを素数、o,kを正の整数とする。
2ⁿ+5⁰=k²
をみたすn,o,kの組(n,o,k)をすべて求めよ。
答えとなるn,o,pの値の総和を回答してください
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
$n=1,2,3...、k=0,1,2...n-1$とします。
また、不等式$$a_1<a_2<...<a_n≦n$$
を$A_0$とし、$A_0$の$n-1$個の$<$のうち$k$個が$≦$に置き換わったものの一つを$A_k$とします。
ここで、$A_k$をみたす正整数$(a_1,a_2...a_n)$の組の総数を$N_k$とするとき、$N_0+N_1+...+N_{n-1}$を$n$を用いて表してください。
$C$(コンビネーション記号)を用いて、$aCb$の形で表すことができるので、$a,b$の間に半角スペースを入力して、$a$ $b$を半角英数字で入力してください。 追記:ただし、$b$は$2$つの値が考えられるので、小さい方を入力してください。 例)$nC2→n$ $2,2nCn→2n$ $n$
※初めの解答では指定がなく間違い判定になった方がいたので修正させていただきました、、
正の実数 $x,y,z$ が, $$ (6x+15y+8z)xyz=5 $$ を満たす時, $(5x+5y+4z)^2$ の最小値を求めてください.
半角数字で入力してください
$ $ 原点を $O$ とする $xy$ 平面において,(正とは限らない)整数 $n$ に対し座標 $(60, n)$ の点を $P_n$ と表します.$n$ を整数全体で動かしたとき,線分 $OP_n$ の長さとしてあり得る整数値の総和を求めて下さい.
半角英数にし,答えとなる正整数値を入力し解答して下さい.
正整数 $n$ を与えたところ,以下の等式をみたす実数 $x$ がちょうど $4$ つ存在しました. $$x^2 - 18\sqrt{n}|x| - 30n + 1110 = 0$$$n$ のとり得る値の総和を求めて下さい.
$n^2-n+1$が平方数となるような非負整数$n$を全て求めよ。
$n$を小さい順に改行して半角で解答して下さい。 例)$n=3,7,9$の場合 3 7 9 と解答して下さい。
命題「aⁿ+bⁿ=cⁿ (n整数、a,b,cの最大公約数1)を満たす全ての自然数a,b,cは互いに素である」の真偽を述べよ
真ならば真、偽ならば偽と入力
$ a!=b^{2}+2となる自然数a,整数bについて、 $ $ k(a,b)=a+bとおく。 $ $ k(a,b) の値として考えられるものは何個あるか。 $
34人の生徒を3人の班と4人の班に分けたところ、4人の班は3人の班より5つ多くできた。3人の班の数と、4人の班の数をそれぞれ求めなさい
半角で、3人の班=Xで答えるものとする
以下の値を素数 $2017$ で割った余りを解答してください。ただし、$\lfloor x\rfloor$ は $x$ 以下の最大の整数を表します。
$\displaystyle\sum_{k=1}^{2023} \left\lfloor\dfrac{3}{7}×2^k\right\rfloor(-1)^{k+1}$
非負整数を半角で入力してください.
初項が$1(a_1=1)$の数列{$a_n$}は、任意の正整数$n$に対し $$ a_{n+1}^3-10a_na_{n+1}^2+31a_n^2a_{n+1}-30a_n^3=0 $$ を満たしている。 $a_{60}$としてあり得る値すべての総積を求めたい。 ただし答えは非常に大きいので、答えの正の約数の個数を1000で割ったあまりを答えよ。
$0$以上$999$以下の整数を半角英数字で入力してください。
(11/7:一部問題文を修正)
$P(x)$ は整数係数の monic な (最高次の係数が1の) 3次多項式 であるとする。方程式 $P(x) = 0$ は、相異なる3つの整数解を持 つことが分かっている。 $P(0)=6$ $P(1)=4$ のとき、$P(4)$の値を求めよ。
半角でスペースなし
5進数で表された[2024]を2進数で表せ。
数字のみでOK