nを素数、o,kを正の整数とする。
2ⁿ+5⁰=k²
をみたすn,o,kの組(n,o,k)をすべて求めよ。
答えとなるn,o,pの値の総和を回答してください
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
$n=1,2,3...、k=0,1,2...n-1$とします。
また、不等式$$a_1<a_2<...<a_n≦n$$
を$A_0$とし、$A_0$の$n-1$個の$<$のうち$k$個が$≦$に置き換わったものの一つを$A_k$とします。
ここで、$A_k$をみたす正整数$(a_1,a_2...a_n)$の組の総数を$N_k$とするとき、$N_0+N_1+...+N_{n-1}$を$n$を用いて表してください。
$C$(コンビネーション記号)を用いて、$aCb$の形で表すことができるので、$a,b$の間に半角スペースを入力して、$a$ $b$を半角英数字で入力してください。 追記:ただし、$b$は$2$つの値が考えられるので、小さい方を入力してください。 例)$nC2→n$ $2,2nCn→2n$ $n$
※初めの解答では指定がなく間違い判定になった方がいたので修正させていただきました、、
正の実数 $x,y,z$ が, $$ (6x+15y+8z)xyz=5 $$ を満たす時, $(5x+5y+4z)^2$ の最小値を求めてください.
半角数字で入力してください
$$a,bは負でない整数とする。$$$$このときa!+b!=(a+b)!$$$$を満たす組(a,b)を全て求めよ。$$
組(a,b)の個数を入力してください。
正整数 $n$ を与えたところ,以下の等式をみたす実数 $x$ がちょうど $4$ つ存在しました. $$x^2 - 18\sqrt{n}|x| - 30n + 1110 = 0$$$n$ のとり得る値の総和を求めて下さい.
半角英数にし,答えとなる正整数値を入力し解答して下さい.
$$ x+ \frac{1}{x} =-1 $$ のとき以下の値を求めよ $$ \sum_{k=1}^{m^{3}-7m+9}(x^{k}+\frac{1}{x^{k}}) \quad $$ ただしmは自然数である。
$37^{2024}$ の十の位と一の位の数をもとめてください.
$37^{2024}$ の十の位と一の位の数を空白で区切って1行に入力してください. 例えば $37^{2024}$ の十の位が $0$ で一の位が $2$ の場合は 0 2 のように入力してください。
0 2
初項が$1(a_1=1)$の数列{$a_n$}は、任意の正整数$n$に対し $$ a_{n+1}^3-10a_na_{n+1}^2+31a_n^2a_{n+1}-30a_n^3=0 $$ を満たしている。 $a_{60}$としてあり得る値すべての総積を求めたい。 ただし答えは非常に大きいので、答えの正の約数の個数を1000で割ったあまりを答えよ。
$0$以上$999$以下の整数を半角英数字で入力してください。
(11/7:一部問題文を修正)
以下の値を素数 $2017$ で割った余りを解答してください。ただし、$\lfloor x\rfloor$ は $x$ 以下の最大の整数を表します。
$\displaystyle\sum_{k=1}^{2023} \left\lfloor\dfrac{3}{7}×2^k\right\rfloor(-1)^{k+1}$
非負整数を半角で入力してください.
$$ x+ \frac{1}{x} =1 $$ のとき以下の値を求めよ $$ \sum_{k=1}^{10^m}(x^{k}+\frac{1}{x^{k}}) \quad $$ ただしmは自然数である。
半角数字で答えてください。 また、複数個の値を取りうる場合は値の小さい順に改行して入力してください。
$ f(x)= 2^{2^{x}x}-1 $ とする。このとき、 $ f(1)+f(2)+f(3)+・・・+f(2024)=A $ とすると、Aの一の位の数字は何になるか。
101^100の下位5桁(万の位まで)を求めよ。
半角でお願いします。
$4桁の数Xについて、Xの各位の数字を1桁ずつ足し合わせた和をk(X)とおく。$ $4桁の数A,Bにおいて$$$ \begin{eqnarray} \frac{k(A)}{k(B)}=\frac{A}{B}=n \end{eqnarray} $$$ (nは2以上の整数)$ $のとき、Aの取りうる値は何個あるか。$ 半角数字のみで答えよ