$∠B=60°$を満たす鋭角三角形$ABC$について、その内接円が$AC,AB$にそれぞれ$D,E$で接している。$∠B$の二等分線と直線$DE$の交点を$F$とすると以下が成立した。 $$ AB=4 CF=3 $$ $F$を通り$AB$と平行な直線と$AC$の交点を$G$とするとき、$CG²$の値を求めてください。
半角で解答してください。
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
$4$ 点 $A,B,C,D$ は同一円周上にあり,その内部(辺上を含まない)に点 $P$ をとります. また,線分 $AP,BP,CP,DP$ の垂直二等分線をそれぞれ $a,b,c,d$ とします. $a,b$ の交点を $E$,$b,c$ の交点を $F$,$c,d$ の交点を $G$,$d,a$ の交点を $H$ とすると,$4$ 点 $E,F,G,H$ は同一円周上にあり,四角形 $EFGH$ の二本の対角線は $P$ で交わりました. そして,以下が成立しました: $$HP=5,\quad HE=11,\quad EF=16$$ このとき,$HG$ の長さの二乗は互いに素な正整数 $a,b$ を用いて $\dfrac{b}{a}$ と表せるので,$a+b$ を解答してください.
非負整数を半角で入力してください.
座標平面上の $|x|≦1$ かつ $|y|≦1$ を満たす領域を $D$ とする。また傾き $1$ の直線を $l$, $y=x^2$ のグラフを平行移動したグラフ $C$ の頂点を $P$ とする。$l$ を $D$ と共有点を持つように, $C$ を $P$ が $D$ 内に存在するように無作為にとるとき, $l$ と $C$ が交わる確率を求めよ。
少数第4位を四捨五入して, 少数第3位までを,半角数字で解答してください。
$$ \sum _{k=0}^{2024} \dfrac{{}_{2024}\mathrm{C}_{k}}{2k+1}(-1)^{k}$$ は互いに素な二つの整数 $p,q$ を用いて $\dfrac{p}{q}$ と表せます. $p$ は $2$ で最大何回割り切れますか?
非負整数を半角数字で答えてください
$$ \lim_{n \to \infty} n \left\{ \frac{1}{n} \sum_{k=1}^{n} \left(\frac{k}{n}\right)^{2025}-\int_{0}^{1} x^{2025}dx \right\} $$を求めよ。
答えは互いに素な自然数$p,q$を用いて$\displaystyle\frac{p}{q}$とあらわされるので$p+q$を半角で1行目に記入してください。
$x$に関する3次方程式$x^3+ax+b=0$($a,b$は実数)の3解の絶対値がすべて1以下となる$a,b$の必要十分条件が表す領域を$ab$平面に図示し、その面積を求めよ。
面積の値のみを解答してください。答えは分数になるので/を用いて入力してください。 例:$\displaystyle\frac{5}{7}$→5/7
凸四角形 $ABCD$ において, $$AB=BD=7 ,BC=5,CD=4, 2∠ACB+∠ACD=180°$$
が成り立ちました.このとき,線分 $AD$ の長さは互いに素な自然数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので $a+b$ を解答してください.
半角数字で解答してください. 不備等あれば教えて下さい。
円に内接する $8$ 角形 $ABCDEFGH$ が $\angle{A}=121^{\circ},\angle{B}=122^{\circ},\angle{C}=123^{\circ},\angle{D}=124^{\circ},\angle{E}=125^{\circ},\angle{F}=126^{\circ}$ を満たすとき,$\angle{G}$ の大きさを度数法で解答してください.
半角数字で解答してください.
方程式x⁶−6x⁵+15x⁴−47x³+15x²−6x+1=0の実数解を求めて下さい。
正の整数a.b.cを用いて$\frac{b±√c}{a}$の形で表せられるので、a+b+cの値を半角で解答して下さい。
$5\times5$ のマス目の異なる $2$ つのマスにナイトの駒を $1$ つずつ置き,「ナイトの駒の動きに従って $2$ つの駒を同時に動かす」という操作を繰り返したところ,$2$ つの駒が同じマスに止まりました. このとき,最初にナイトの駒を置いた $2$ マスの組み合わせとしてあり得るものの総数を求めてください.
縦4列、横4行の16マスのうち、いくつかに色を塗ります。塗られるマスの数が列ごとに相異なり、行ごとに相異なる(但し、列と行で塗られる数が一致しても良い)、場合、塗り方は何通りありますか?
半角数字で入力してください。
θの方程式 sin^2θ-cosθ+a=0 (0≦θ<2π)の解が偶数個存在する場合における定数aのとりうる値の範囲を求めよ。
答えのみ
$\triangle{ABC}$ は $AB=AC,∠{BAC}=40°$ を満たす。線分$BC$の中点$M$と$\triangle{ABC}$の内部の点$P$について、直線$AM$に関して直線$PM$を対称移動させた直線を$m$、$m$と直線$AP$の交点を$Q$とすると、$PB>PC,∠BPC=110°,∠AQM=15°$を満たしました。このとき、$∠PBC$の大きさを度数法で求めてください。ただし、答えは互いに素な正の整数$a,b$を用いて$(\dfrac{a}{b})°$と表されるので、$a+b$ を解答してください。
例)半角数字で入力してください。