座標平面上の $|x|≦1$ かつ $|y|≦1$ を満たす領域を $D$ とする。また傾き $1$ の直線を $l$, $y=x^2$ のグラフを平行移動したグラフ $C$ の頂点を $P$ とする。$l$ を $D$ と共有点を持つように, $C$ を $P$ が $D$ 内に存在するように無作為にとるとき, $l$ と $C$ が交わる確率を求めよ。
少数第4位を四捨五入して, 少数第3位までを,半角数字で解答してください。
Twitterでログイン Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する