内接五角形$ABCDE$があり、$∠BAC$=$∠CAD$=$∠DAE$である。 また、$AB=12$、$AC=17$、$AD=20$である。 このとき、$AE$の長さは互いに素な正の整数$p,q$を用いて$\frac{p}{q}$と表せるので$p+q$を解答してください。
半角で解答してください。
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
鋭角三角形$ABC$について、$A,B,C$から対辺に下ろした垂線の足をそれぞれ$D,E,F$とする。$△ABC$の外接円と直線$EF$の交点の内、劣弧$AB$側の交点を$G$、劣弧$AC$側の交点を$H$とする。直線$BG$と直線$DF$の交点を$I$としたとき、$A.I,H$は共線であった。このとき、以下が成立した。 $$ ∠C=60° BC=8 $$ このとき、$AC$の長さは自然数$a.b$を用いて$a+√b$と表せられるので、$a+b$の値を求めて下さい。
半角で解答して下さい。
$1998^{2024}$の下$2$桁を求めよ。
1行目に半角整数で入力してください。
$a + b + c = 999$ かつ $a \le b \le c$ を満たす正整数の組 $(a, b, c)$ であって, $2^a, 2^b, 2^c$ が非退化な三角形の三辺の長さとなるものは何通りありますか.
答えは正の整数値となるので,その整数値を半角で入力してください.
正方形 $ABCD$ の辺 $BC$ 上に点 $E$ をとると, $$BE=7,\ \ \ \ CE=5$$が成り立ちます.$E$ を中心とした半径 $7$ の円を $O$ とし,正方形 $ABCD$ の内部かつ円 $O$ の周上の点 $F$ をとると直線 $DF$ は円 $O$ の接線となりました.このとき,線分 $CF$ の長さは正整数 $a,b$ と素数 $c$ を用いて $\displaystyle{\frac{a+\sqrt{b}}{c}}$ と書けるので $a+b+c$ の値を解答してください.
答えは正の整数値となるので, その整数値を半角で入力してください.
追記 答えひらがなな訳ありませんでした、失礼しました
垂心を $H$ とする鋭角三角形 $ABC$ において,直線 $AH$ と辺 $BC$ の交点を $D$ とすると, $$BH=2,CH=7,DH=1$$ が成り立ちました.このとき,三角形 $ABC$ の面積の $2$ 乗を求めてください.
半角数字で入力してください。
3種類の文字 $A,B,C$ を用いて以下の条件を満たした長さが5の文字列は全部でいくつあるか.
$A$ の右隣にある文字は $B$ ではない.
$B$ の右隣にある文字は $C$ ではない.
非負整数で解答して下さい.
2つの正整数 $a,b$ の組のうち,最小公倍数が最大公約数の $10$ 倍となり,$a+b=154$ を満たすもの全てについて,$ab$ の総和を求めてください.
非負整数で解答してください.
https://pororocca.com/problem/19/ こちらの問題の設定で,「裏裏裏裏裏表表表表表」というピザの塔ができるような調理は何通りあるか答えなさい.
半角数字で入力してください.
$a,b,c$ を実数とする。次の連立方程式を解け。
$$ a^2-4b-1=0\\ b^2-8c+28=0\\ c^2-6a+2=0\\ $$
a,b,cを半角数字として(a,b,c)で解答してください。無理数などを使いたい場合はTeXコマンドを使用してください。
$\pi$ と $\dfrac{355}{113}$ はどちらが大きいか。ただし必要があれば積分
$$ \int_0^1\frac{x^8(1-x)^8(25+816x^2)}{3164(1+x^2)}dx $$
を計算せよ。
piまたは 355/113 で解答してください。
pi
355/113
(1) 定積分
$$ \int_0^1 \frac{x\log x}{(x+1)^2}dx $$
の値を求めよ。
(2) 関数列 ${f_n(x)}$ を
$$ f_{n+1}(x)=(x^x)^{f_n(x)},\quad f_1(x)=x^x $$
で定める。定積分
$$ \int_0^1(x^x)^{{(x^x)}^{(x^x)\cdots}}dx:=\int_0^1\lim_{n\to \infty} f_n(x)\ dx $$
の値を求めよ。ただしテトレーション $x^{{x^{x\cdots}}}$ は底 $x$ が $e^{-e}<x<e^{1/e}$ のとき収束することは証明せずに用いて良い。
この問題の正解判定は出題者により手動で行われるため、判定までに時間がかかることがある。
(1) $a,b$ を整数でない正の有理数とする。 $a^b$ は常に無理数か。
(2) $a$ を整数でない正の有理数とする。 $a^a$ は常に無理数か。
(3) $a,b$ を正の無理数とする。 $a^b$ は常に無理数か。
(4) $a$ を正の無理数とする。 $a^a$ は常に無理数か。
解答欄に改行区切りで O (オー)または X (エックス)を記述せよ。正解判定は各行に対して行われ、完答のみ正解となる。
O
X