正整数 $3$ つの集合 $S$ であって,以下を同時にみたすものは全部でいくつありますか?
半角英数にし,答えとなる非負整数値を入力し解答して下さい.
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
正整数 $x, y$ が $$x^{11}y^{10} = 2^{(2^{1110})} \cdot 3^{(3^{1110})} \cdot 5^{(5^{1110})} \cdot 37^{(37^{1110})} \cdot 1110$$ をみたすとき,$x$ のとり得る最小の値を求めて下さい.
半角英数にし、答えとなる正整数値を入力し解答して下さい.
OMCB020-E(URL : https://onlinemathcontest.com/contests/omcb020/tasks/9732) のアレンジ,というよりかはこのコンテストのTester期間中に運営さんに改題を提案したときの問題です. 4bにそぐわないとしてOMCへの使用には至りませんでしたが,せっかくなのでよければ解いてみてください.
$10^{12}$ 以下の正整数であって,$9$ の倍数または $10$ 進法表記した時どこかの桁に $9$ が現れる数はいくつありますか?
非負整数で入力してください。
$1$ 以上 $12$ 以下の整数からなる集合を $U$ とし,空でない $U$ の部分集合 $S, T$ を $$S \cup T = U,S \cap T = \phi$$となるよう定めたところ,$S$ の元の和と $T$ の元の平方和が等しくなりました.このような集合の組 $(S, T)$ すべてに対する「$S$ の元の和」の総和を解答して下さい.
たとえば, $$S = \{1, 2, ..., 9\},T = \{10, 11, 12\}$$であるなら,$S$ の元の和は $1 + 2 + \cdots + 9 = 45$ と計算され,$T$ の元の平方和は $10^2 + 11^2 + 12^2 = 365$ と計算されます.
4次方程式 $x^4-4x^3-21x^2-8x+4=0$ の4つの相異なる実数解を,小さいものから順に $a_{1},a_{2},a_{3},a_{4}$ とします.このとき,以下の値を求めてください:
$$\displaystyle\frac{1}{a_{1}^2-a_{1}a_{2}+a_{2}^2}+ \displaystyle\frac{1}{a_{3}^2-a_{3}a_{4}+a_{4}^2} $$
互いに素な2つの正整数 $a,b$ を用いて $\displaystyle\frac{a}{b}$ と表されるので,$a+b$ を求めてください.
長方形$ABCD$がある.$BC$上に点$E$を,$CD$上に点$F$を以下の式が成り立つように取る.\ $\angle BAE=\angle CEF$,$\angle AFD=2\angle CEF$,$DF=2$,$CF=\sqrt{5}-2$が成り立つとき,$\angle DAF$の値を度数法で求めよ.
$\triangle ABC$の辺$AB$上に点$D$が,辺$AC$上に点$E$がそれぞれある.また,辺$BC$上に2点$P,Q$があり,4点$B,P,Q,C$はこの順に並んでいる. $\triangle BDP$の外接円の$B$における接線と,$\triangle CEQ$の外接円の$C$における接線とが点$F$で交わっている. $AD=2,DB=4,AE=5,EC=3,BP=1,PQ=10,QC=1$のとき,$AF=\dfrac{a\sqrt{b}}{c}$である.ただし,$a,b,c$はいずれも正の整数であり,$a,c$は互いに素である.また,根号の内部は十分簡単になっている. $a+b+c$の値を求めよ.
半角数字で解答してください.
正整数 $x, y, z$ が以下の等式を同時にみたすとき,積 $xyz$ の値としてあり得るものの総和を求めてください.
$$x + y + z = 48,x^2 + y^2 + z^2 = 1110$$
半角英数にし,答えとなる正整数値を入力し解答して下さい.
$a, b$ を非負整数とします。xy平面上の点 $(0, 0)$から点 $(a, b)$まで、$x$ 軸正方向に1進むか、$y$ 軸正方向に1進むかで到達するための道の数を $C(a, b)$ とします。
$0 \leq a < 1100 $ かつ $0 \leq b < 1100 $ であるような非負整数組 $(a, b)$ であって、$C(a, b)$ が奇数であるようなものの個数を答えてください。
答えは非負整数なので,その数値を回答してください.OMCと同じです.
正の実数の組 $(x_1,x_2,x_3,x_4,x_5)$ に対し, $a_1=b_1=1 $ および $n=1,2,3,4,5$ について以下を満たす実数の組の列 $(a_1,b_1),(a_2,b_2),\dots,(a_6,b_6)$ を考えます. $$a_{n+1}=x_n a_n-n b_n,\quad b_{n+1}=x_n b_n$$ $b_6=100$ となるとき, $a_6$ として取りうる値には最大値が存在し, それを $M$ とします. $M$ の最小多項式 $P$ が存在するので, $P(500)$ を求めてください. ただし, $P$ の最高次の係数は $1$ とします.
一辺の長さが $1$ の立方体 $1800$ 個から構成される,長さ $10,12,15$ の辺からなる直方体があります. このとき,直方体の対角線のうちの $1$ つについて,これが内部を通過する立方体の個数を求めてください.
ただし,立方体の内部とは,頂点や辺・面そのものを含まないものとして考えます.
求めるべき値は非負整数値として一意に定まるので,これを解答してください.
以下の値を素数 $2017$ で割った余りを解答してください。ただし、$\lfloor x\rfloor$ は $x$ 以下の最大の整数を表します。
$\displaystyle\sum_{k=1}^{2023} \left\lfloor\dfrac{3}{7}×2^k\right\rfloor(-1)^{k+1}$
非負整数を半角で入力してください.
$37^{2024}$ の十の位と一の位の数をもとめてください.
$37^{2024}$ の十の位と一の位の数を空白で区切って1行に入力してください. 例えば $37^{2024}$ の十の位が $0$ で一の位が $2$ の場合は 0 2 のように入力してください。
0 2