第2回琥珀杯 A

Kohaku 自動ジャッジ 難易度: 数学 > 競技数学
2025年4月2日0:00 正解数: 5 / 解答数: 5 (正答率: 100%) ギブアップ数: 0
この問題はコンテスト「第2回琥珀杯」の問題です。

全 5 件

回答日時 問題 解答者 結果
2025年5月17日17:23 第2回琥珀杯 A MACHICO
正解
2025年4月7日14:08 第2回琥珀杯 A Hensachi50
正解
2025年4月3日13:39 第2回琥珀杯 A Germanium32
正解
2025年4月2日14:50 第2回琥珀杯 A GaLLium31
正解
2025年4月2日10:06 第2回琥珀杯 A kurao
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

第2回琥珀杯 D

Kohaku 自動ジャッジ 難易度:
9月前

10

交わらない$2$円$O_1,O_2$は直線$m$に同じ側で接しており、その反対側に交わらない$2$円$O_3,O_4$が直線$m$に接している。円$O_x(x=1,2,3,4)$の半径を$x$、直線$m$との接点を$P_x$とすると、点$P_1,P_4,P_2,P_3$がこの順に並んだ。$P_1P_4=P_2P_3=5,P_2P_4=3$のとき、四角形$O_1O_2O_3O_4$の面積を求めよ。

第2回琥珀杯 E

Kohaku 自動ジャッジ 難易度:
9月前

7

問題文

純循環小数(少数第一位から循環する循環小数)$x$を定義域とする関数$f(x)$を、$x$の循環部とする。ただし、循環部に0が現れ、それより大きい位に0以外の数がない場合、その0は無視するものとする。$f(\frac{5}{33})=15,f(\frac{4}{3333})=12$といった具合である。
正整数$n$に対して、$n<m<2025^{2025}$なる正整数$m$であって、$n$の値にかかわらず以下の等式を満たすものはいくつあるか。
$$f(\frac{n}{m})=(m−2)n$$
必要ならば、$$0.30102<\log_{10}2<0.30103, 0.47712<\log_{10}3<0.47713$$
を用いてよい。

第2回琥珀杯 B

Kohaku 自動ジャッジ 難易度:
9月前

9

問題文

$AB=1$の正十二角形$ABCDEFGHIJKL$がある。$KD$と$CJ$、$AF$と$DK$、$AF$と$DI$、$DI$と$EJ$、$AH$と$EJ$、$AH$と$CJ$の交点を、それぞれ$M,N,O,P,Q,R$とする。六角形$MNOPQR$の面積を求めよ。

解答形式

互いに素な正整数$a,b,c$及び平方因子をもたない正整数$d$を用いて、$\frac{b−c\sqrt{d}}{a}$と表せます。$a+b+c+d$を解答してください。

WMC(E)

Not_here 自動ジャッジ 難易度:
8月前

26

問題文

SKG学院では$5×5$のマス目を使い,とあるゲームが行われている.
ゲームのルールは以下の通り.
・お客さんと生徒がじゃんけんをする.勝った方が先手,負けた方が後手となる.
この時あいこは考えないものとする.
・先手は黒の碁石,後手は白の碁石をマスの上に交互に置いていく.
・同じマスには碁石は一つまでしか置けない.
・マス目が全て埋まった時,各行について次の条件を満たすものを特別な行と呼び,その個数を数える.
特別な辺:ある行の$5$マスを見た時お客さんが置いた碁石の個数が偶数個であるもの.
・特別な行の個数が偶数であればお客さんの勝ち,奇数であれば生徒の勝ちとなる.

お客さんが勝つ確率を$A$,お客さんが勝つ時の碁石の置き方の総数を$B$とする.
$A×B$の値を求めなさい.
但し回転して重なるような碁石の置き方は区別しないとする.

解答形式

半角数字で入力して下さい.

WMC(K)

Not_here 自動ジャッジ 難易度:
8月前

27

問題文

半径$66$の円に内接する正$66$角形の対角線(各辺も含む)の長さの$66$乗和を求めて下さい.
但しある長さの$𝑛$乗和とは,与えられた長さ$P_1,P_2…$について${P_1}^n + {P_2}^n …$を指します.

解答形式

答えを$2025$で割った余りを半角数字で入力してください.
4/26 19:55 誤った答えが入力されていました.大変申し訳ありません.

CpSLSL

Not_here 採点者ジャッジ 難易度:
8月前

2

問題文

次を満たすような正整数の組 $(x,y,z)$ をすべて求めてください.
$$2^x+9^y+2025=2009^z-65-28$$

解答形式

簡単な証明をお書き下さい.

第2回琥珀杯 C

Kohaku 自動ジャッジ 難易度:
9月前

16

$10^{n^n}$を$998$で割った余りが$512$となる最小の自然数$n$を求めよ。

整数問題

Ryomanic 自動ジャッジ 難易度:
9月前

10

問題文

0,1,2,……,8 の数字から一つずつ選んでa,b,c,d,e,f,gに代入するという操作を考える。
数字の重複を許すとき、十進表記された7桁の数abcdefgが3の倍数となる確率を求めよ。
ただし、a=0の場合も認めます。
(似た問題を投稿しています。解答する場所を間違えないように注意してください。)

解答形式

互いに素な正整数p,qを用いてp/qと表せるため
p+qを解答してください。

WMC(H)

Not_here 自動ジャッジ 難易度:
8月前

7

問題文

接点・共通領域を持たない円$A,B$があり,これらの中心を通る直線$l$との交点を$P,Q,R,S$とします.($P≠Q≠R≠S$)

但し$P,Q$が$A$の円周上,$R,S$が$B$の円周上にあり,$P,Q,R,S$の順に並ぶとします.

また$PS,QR$の長さをそれぞれ$a,b$と置きます.

この時$A,B$の共通内接線の長さが$2025$となるような$(a,b)$の組として考えられるものは何通りありますか.

解答形式

半角数字で解答して下さい.

WMC(J)

Not_here 採点者ジャッジ 難易度:
8月前

14

問題文

聖くんと光くんはトランプゲームを行うことにした.

なお$1$ から $13$ までの数字が書かれたトランプをそれぞれ四枚ずつ用いる.

ルールは以下の通り.
- 聖くんはトランプを $1$ 枚から$3$ 枚まで引くことができる.
- 光くんは幾つかの質問をして,聖くんが引いたトランプに書かれた数字を回答する.

光くん「書かれた数字の和を教えて」
聖くん「$31$ だよ」
光くん「うーん難しいな……なにかヒントくれない?」
聖くん「トランプに書かれた数字の積を求めたら、各位の和は $2$ になったよ」

光くんが引いたトランプの目として考えられるものを全て求めなさい。

解答形式

答えが$1,2,4$の場合は$(1,2,4)$と入力して下さい.(小さい順に)

WMC(D)

Not_here 自動ジャッジ 難易度:
8月前

11

問題文

SKG学院の文化祭では,$1$から$10$の目が一つずつ書かれた十面体の歪んだダイスを配布しています.

このダイス$10$個に$1$から$10$までの番号をつけることにしました.

ここで以下のような事実が分かっています.
また$1≦n≦10$を満たす任意の整数$n$について,番号$s$がついたダイスを一回振って$n$の目が出る確率を$a_{n^s}$と書くことにします.

・$a_{1^s}:a_{2^s}…a_{9^s}:a_{10^s}=1^s:2^s\cdots9^s:10^s$を満たす.

この$10$個のダイスを同時に一回振る時,出目の積の期待値を求めて下さい.

解答形式

半角数字で入力して下さい.

整数問題

Ryomanic 自動ジャッジ 難易度:
9月前

11

問題文

0,1,2,……,8 の数字から一つずつ選んでa,b,c,d,e,f,gに代入するという操作を考える。
数字の重複を許さないとき、十進表記された7桁の数abcdefgが3の倍数となる確率を求めよ。
ただし、a=0の場合も認めます。

解答形式

互いに素な正整数q,pを用いて
p/q と表せるため、p+qを解答してください。