PGC005 (F)

pomodor_ap 自動ジャッジ 難易度: 数学 > 競技数学
2024年11月21日21:00 正解数: 5 / 解答数: 7 (正答率: 71.4%) ギブアップ数: 0
この問題はコンテスト「PGC005」の問題です。

問題文

$AB=AC$ なる三角形 $ABC$ について,線分 $AB$ 上に点 $D$ をとり,点 $A$ から円 $DBC$ に引いた接線と円 $DBC$ の接点のうち,直線 $DC$ について点 $B$ 側にあるものを $T$ とします.円 $ATC$ と線分 $AB, BC$ の交点をそれぞれ $E(\neq A), P(\neq C)$ とし,直線 $DT$ と直線 $BC$ の交点を $Q$ とすると,直線 $AB$ は $\angle PAQ$ を二等分しました.$AD=7, DC=13$ のとき,線分 $AC$ の長さは互いに素な正整数 $a, b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ を求めてください.


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

PGC005 (E)

pomodor_ap 自動ジャッジ 難易度:
4月前

13

問題文

鋭角三角形 $ABC$ について,垂心を $H$,外心を $O$,直線 $CH$ と直線 $AB$ の交点を $F$,直線 $BC, AC$ について $F$ と対称な点をそれぞれ $X, Y$ とし,直線 $BX$ と直線 $AY$ の交点を $P$ とします.$\angle FOX=\angle AFP$ かつ $FH=1, HC=7$ が成り立つとき,円 $ABC$ の半径としてありうる値の二乗の総和は互いに素な正整数 $a, b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ を解答してください.

bMC_F

bzuL 自動ジャッジ 難易度:
8月前

18

問題文

ある三角形の内心を中心とする半径 $2024$ の円が,その三角形の頂点のうちの一つと,その三角形の外心,垂心を通りました.この三角形の外接円の半径としてあり得る値の総和の整数部分を求めてください.

解答形式

半角数字で解答してください.


問題文

$n$ を $3$ 以上の整数とする。点 $\mathrm{O}$ を中心とする、半径 $1$ の円の形をしたピザがある。ピザの周上には、等間隔に点 $\mathrm{P}_1,\ldots,\mathrm{P}_n$ が並んでいる。

線分 $\mathrm{OP}_1$ 上に、線分 $\mathrm{OO'}$ の長さが $d$ となるような点 $\mathrm{O'}$ をとる。ここで $0< d < 1$ は定数である。ピザを線分 $\mathrm{O'P}_1,\ldots,\mathrm{O'P}_n$ によって分割し、分けられた $n$ 個のピザのうち線分 $\mathrm{P_1P_2,P_2P_3,\ldots, P_nP_1}$ を含む部分の面積を、それぞれ $S_1,\ldots,S_n$ とする。

$S_i$ の 平均はもちろん $\displaystyle \bar{S}= \frac{1}{n}\sum_{i=1}^{n}S_i=\frac{\pi}{n}$ である。では、$S_i$ の分散 $\displaystyle \sigma^2 = \frac{1}{n}\sum_{i=1}^{n}(S_i-\bar{S})^2$ はどうなるだろうか。以下の空欄を埋めよ。

(1)$\displaystyle \frac{\sigma ^2}{d^{\alpha}}$ が $d$ によらない定数となるような $\alpha$ の値は $\alpha=\fbox{ア}$ である。$n=12$ のとき、$\sigma^2$ を具体的に計算すると

$$
\sigma ^2 = \frac{\fbox{イ}-\sqrt{\fbox{ウ}}}{\fbox{エ}}d^{\fbox{ア}}
$$

である。

(2)極限 $\displaystyle \lim_{n\to\infty}n^{\beta}\sigma^2$ が $0$ でない有限の値に収束するような $\beta$ の値は $\beta=\fbox{オ}$ である。$\displaystyle d=\frac{1}{12\pi}$ のとき、その極限値は

$$
\lim_{n\to\infty}n^\fbox{オ}\sigma^2 = \frac{\fbox{カ}}{\fbox{キクケ}}
$$

である。

解答形式

ア〜カには、0から9までの数字が入る。
(1)の答えとして、文字列「アイウエ」を半角で1行目に入力せよ。
(2)の答えとして、文字列「オカキクケ」を半角で2行目に入力せよ。
なお、「ア」や「オ」には0や1が入ることもありうる。
また、分数はできるだけ約分された形で、根号の中身が最小となるように答えよ。
3行目以降に改行して回答すると、不正解となるので注意せよ。

PGC005 (D)

pomodor_ap 自動ジャッジ 難易度:
4月前

17

問題文

$AB<AC$ なる三角形 $ABC$ について,$C$ を通り $B$ で直線 $AB$ に接する円 $\gamma$ と線分 $AC$ の $C$ でない交点を $D$,$D$ を通り $A$ で直線 $AB$ に接する円 $\omega$ と $\gamma$ の $D$ でない交点を $E$ とします.いま,三角形 $ABC$ の外心を $O$ とすると,$$OD=OE, DE=2, BC=11$$ が成り立ちました.線分 $AC$ の長さの二乗を求めてください.

15月前

6

一次関数が(p+q)を満たすとき

y=1/2x+(p+q)がx+(p+q)=12を満たすとき、xの値を求めなさい。ただし、xは自然数であるものとする。

解答形式

数字は全角で入力してください。

過去垢の問題(整数➀)

katsuo_temple 自動ジャッジ 難易度:
4月前

7

問題文

以下の式を満たす素数の組$(a,b,c,d)$について、$abcd$の総和を求めよ。
$$
4a²+b²+c²=d²
$$

解答形式

半角数字で解答してください。

H

kusu394 自動ジャッジ 難易度:
4月前

9

問題文

点 $O$ を中心とする半径 $1$ の円と,その円に内接する正 $169$ 角形 $A_1A_2\cdots A_{169}$ が与えられています.この正 $169$ 角形の頂点のうち,$A_{169}$ を除いた $168$ 頂点から $3$ 点を選ぶ方法は ${}_{168}\mathrm{C}_3$ 通り考えられますが,それらすべてについて選んだ $3$ 点を頂点とする三角形の垂心と $O$ の距離の $2$ 乗の総和を解答してください.(総和の $2$ 乗ではないことに注意してください.)

C

nmoon 自動ジャッジ 難易度:
5月前

11

問題文

三角形 $ABC$ の外心を $O$,垂心を $H$,外接円を $\Gamma$ とする.そして,以下のように点を4つとる.

  • 直線 $BH$ と $\Gamma$ との交点を $P(\not=B)$ とする.
  • 直線 $PO$ と $\Gamma$ との交点を $Q(\not=P)$ とする.
  • 直線 $QH$ と $\Gamma$ との交点を $R(\not=Q)$ とする.
  • 直線 $RO$ と $\Gamma$ との交点を $S(\not=R)$ とする.

このとき,3点 $ C,H,S$ が同一直線上にあった.

$$AH=17 , AO=11$$

のとき,三角形 $ABC$ の面積を求めてください.

解答形式

答えを2乗した値は,互いに素な2つの正整数 $a,b$ を用いて $\displaystyle\frac{a}{b}$ と表されるので,$a+b$ を求めてください.

数列の桁和

mahiro 自動ジャッジ 難易度:
10月前

8

問題文

以下の式の ( $10$ 進法における) 桁和を求めなさい.$$4+\sum_{k=0}^{99}(500+(-1)^k×513)×10^k$$

解答形式

非負整数で回答して下さい.

E

Furina 自動ジャッジ 難易度:
9月前

8

問題文

円 $\Omega$ があり,その周上に点 $P, Q$ があります.いま,$\Omega$ の弧 $PQ$ 上に $2$ 点 $A, B$ を,$P, A, B, Q$ がこの順にあるように取り,線分 $PQ$ 上に点 $C$ を取ると,三角形 $ABC$ の外接円は辺 $PQ$ に接しました.いま,$CQ$ の中点を $M$ とすると,$BM, AQ$ は三角形 $ABC$ の外接円上で交わったのでこの点を $R$ とします.いま,三角形 $ABC$ の外接円と三角形 $PQR$ の外接円の $R$ でない交点を $S$ とするとき,
$$AS=4, AP=2\sqrt{21}, BC=7$$
が成立しました.このとき,$BQ$ の長さは正整数 $a, b, c$ を用いて $\dfrac{\sqrt a-\sqrt b}{c}$ と表せるので,$a+b+c$ を解答してください.

解答形式

半角数字で解答してください.

外心と内心

nmoon 自動ジャッジ 難易度:
12月前

7

問題文

$\angle{A} = 60^{\circ}$ なる三角形 $ABC$ の内心を $I$,外心を $O$ とする.直線 $IO$ と直線 $BC$ の交点を $D$ とし,直線 $AD$ と三角形 $ABC$ の外接円との交点を $E(\not = A)$ とすると,以下が成立した:

$$EI = 23 , IO = 18$$

このとき,線分 $AI$ の長さは,互いに素な正整数 $a,b$ を用いて$\displaystyle\frac{a}{b}$ と表されるので,$a + b$ を解答してください.

KOTAKE杯004(D)

MrKOTAKE 自動ジャッジ 難易度:
26日前

14

問題文

$AB<AC$の三角形$ABC$があり,内心を$I$,直線$AI$と三角形$ABC$の外接円の交点を$M(≠A)$とする.$∠A$内の傍接円と辺$BC$の共有点を$P$としたとき$4$点$BIPM$は共円であり,$BI=5,BC=11$であった.このとき$IP$の長さは正の整数$a,b$と平方因子を持たない正の整数$c$を用いて,$a−b \sqrt{c}$と表せるので$a+b+c$を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.