1から100までの整数の中から異なる3つの整数を選び、$a<b<c$ とします。これらの3つの整数が等差数列をなすような選び方は何通りありますか?
半角英数字で解答してください。
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
鋭角三角形$ABC$があり外心を$O$とする.直線$BO$と$AC$の交点を$D$とおくと$BC=BD,DO=5,AD=6$であったので$AB$の長さの$2$乗を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
$p, q, r $を互いに異なる3つの素数とする。
整数 $K = (qr)^{p-1} + (rp)^{q-1}+ (pq)^r$が、 $K ≡ p+q-1 (mod r)$ という条件を満たすとき、和 $p+q+r$ の最小値を求めよ。
半角左詰め
$0$時$0$分〜$23$時$59$分とする時刻$A$時$B$分について、$60A+B,100A+B$が共に平方数となるとき、$A×B$の総和を求めよ。
半角数字で解答して下さい。
正の実数からなる $2$ つの数列 $a_1,a_2,...$ と $b_1,b_2,...$ があり, 任意の整数 $n$ について以下を満たしている. $$ (a_{n+1},b_{n+1})=\left(\frac{a_n}{2},b_n+\frac{a_n}{2}\right)または(a_{n+1},b_{n+1})=\left(a_n+\frac{b_n}{2},\frac{b_n}{2}\right)が成立する. $$ $(a_1,b_1)$ が $(7,11)$ であるとき, $a_{100}$ としてあり得る値の中で $2025$ 番目に小さいものを求めよ.
答えの値を $x$ としたとき, $2^{100}x$ の値を解答してください. 参考:$2^{100}=1267650600228229401496703205376$
0,1,2,……,8 の数字から一つずつ選んでa,b,c,d,e,f,gに代入するという操作を考える。 数字の重複を許すとき、十進表記された7桁の数abcdefgが3の倍数となる確率を求めよ。 ただし、a=0の場合も認めます。 (似た問題を投稿しています。解答する場所を間違えないように注意してください。)
互いに素な正整数p,qを用いてp/qと表せるため p+qを解答してください。
$$ a_1 = 1,\quad a_2 = 2,\quad a_n = 5a_{n-1} - 6a_{n-2} \quad (n \geq 3) $$
$a_{10}$を求めなさい。
互いに素な整数の辺 $a,b,l$(斜辺 $l$)を持つ直角三角形を考える。内接円の半径を $r$、周長を $L$、面積を $S$ とする。 $L^2=kS$ ($k$ は正の整数) を満たすとき、 全てのkの値を求めよ。
半角1スペースおきに小さい順に並べてください
$AB=BC$で、面積が$2025$であるような二等辺三角形$ABC$がある。$AB(=BC)$の最小値を求めよ。
半角数字で$AB^2(=BC^2)$の値を入力してください。
3辺の長さがそれぞれ自然数の三角形であり、3辺の長さの合計が1200になるという。このような条件を満たす三角形の個数を求めよ。
モニターに0が表示されている。ここには3つのボタンがあり、 ・ボタン$A$を押すとモニターの数字が1増える。 ・ボタン$B$を押すとモニターの数字が2増える。 ・ボタン$C$を押すとモニターの数字が3増える。 ボタン$A~C$をそれぞれ任意の回数押したとき、 最後に表示される数字が300以下の非負の3の倍数となるようなボタンの押し方の総数を求めよ。ただし、ボタンを押す順番は区別しない。
例)半角数字で入力してください。
以下の連立方程式を満たすような実数の組$(a,b,c,d)$の個数を求めよ。 $$ \begin{cases} ab^2c^3d^4=1 \\ a^4bc^2d^3=1\\a^3b^4cd^2=1\\a^2b^3c^4d=1\end{cases} $$
半角数字で個数を入力してください。
交わらない$2$円$O_1,O_2$は直線$m$に同じ側で接しており、その反対側に交わらない$2$円$O_3,O_4$が直線$m$に接している。円$O_x(x=1,2,3,4)$の半径を$x$、直線$m$との接点を$P_x$とすると、点$P_1,P_4,P_2,P_3$がこの順に並んだ。$P_1P_4=P_2P_3=5,P_2P_4=3$のとき、四角形$O_1O_2O_3O_4$の面積を求めよ。