yes 自動ジャッジ 難易度: 数学 > 競技数学
2025年3月18日21:04 正解数: 5 / 解答数: 10 (正答率: 50%) ギブアップ不可

全 10 件

回答日時 問題 解答者 結果
2026年1月10日14:15 Not_here
正解
2025年7月21日20:47 Hensachi50
正解
2025年3月23日18:20 noname
正解
2025年3月23日18:17 noname
不正解
2025年3月23日17:59 noname
不正解
2025年3月23日17:56 noname
不正解
2025年3月23日17:56 noname
不正解
2025年3月22日10:17 Tehom
正解
2025年3月20日15:08 ゲスト
不正解
2025年3月19日22:04 Nyarutann
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

シンプルな幾何

MrKOTAKE 自動ジャッジ 難易度:
12月前

8

問題文

鋭角三角形$ABC$があり外心を$O$とする.直線$BO$と$AC$の交点を$D$とおくと$BC=BD,DO=5,AD=6$であったので$AB$の長さの$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

問題5

sulippa 自動ジャッジ 難易度:
6月前

4

問題文

$p, q, r $を互いに異なる3つの素数とする。

整数 $K = (qr)^{p-1} + (rp)^{q-1}+ (pq)^r$が、
$K ≡ p+q-1 (mod r)$
という条件を満たすとき、和 $p+q+r$ の最小値を求めよ。

解答形式

半角左詰め

過去垢の問題(整数②)

katsuo_temple 自動ジャッジ 難易度:
14月前

6

問題文

$0$時$0$分〜$23$時$59$分とする時刻$A$時$B$分について、$60A+B,100A+B$が共に平方数となるとき、$A×B$の総和を求めよ。

解答形式

半角数字で解答して下さい。

JMO2025yo-6?

simasima 自動ジャッジ 難易度:
10月前

7

問題文

正の実数からなる $2$ つの数列 $a_1,a_2,...$ と $b_1,b_2,...$ があり, 任意の整数 $n$ について以下を満たしている.
$$
(a_{n+1},b_{n+1})=\left(\frac{a_n}{2},b_n+\frac{a_n}{2}\right)または(a_{n+1},b_{n+1})=\left(a_n+\frac{b_n}{2},\frac{b_n}{2}\right)が成立する.
$$
$(a_1,b_1)$ が $(7,11)$ であるとき, $a_{100}$ としてあり得る値の中で $2025$ 番目に小さいものを求めよ.

解答形式

答えの値を $x$ としたとき, $2^{100}x$ の値を解答してください.
参考:$2^{100}=1267650600228229401496703205376$

整数問題

Ryomanic 自動ジャッジ 難易度:
9月前

10

問題文

0,1,2,……,8 の数字から一つずつ選んでa,b,c,d,e,f,gに代入するという操作を考える。
数字の重複を許すとき、十進表記された7桁の数abcdefgが3の倍数となる確率を求めよ。
ただし、a=0の場合も認めます。
(似た問題を投稿しています。解答する場所を間違えないように注意してください。)

解答形式

互いに素な正整数p,qを用いてp/qと表せるため
p+qを解答してください。

yes 自動ジャッジ 難易度:
10月前

11

問題文

$$
a_1 = 1,\quad a_2 = 2,\quad a_n = 5a_{n-1} - 6a_{n-2} \quad (n \geq 3)
$$

解答形式

$a_{10}$を求めなさい。

原始ピタゴラス数

sulippa 自動ジャッジ 難易度:
8月前

4

問題文

互いに素な整数の辺 $a,b,l$(斜辺 $l$)を持つ直角三角形を考える。内接円の半径を $r$、周長を $L$、面積を $S$ とする。
$L^2=kS$ ($k$ は正の整数) を満たすとき、
全てのkの値を求めよ。

解答形式

半角1スペースおきに小さい順に並べてください

二等辺三角形と最小値

smasher 自動ジャッジ 難易度:
3月前

4

問題文

$AB=BC$で、面積が$2025$であるような二等辺三角形$ABC$がある。$AB(=BC)$の最小値を求めよ。

解答形式

半角数字で$AB^2(=BC^2)$の値を入力してください。

7月前

3

3辺の長さがそれぞれ自然数の三角形であり、3辺の長さの合計が1200になるという。このような条件を満たす三角形の個数を求めよ。

自作3

tomorunn 自動ジャッジ 難易度:
7月前

5

問題文

モニターに0が表示されている。ここには3つのボタンがあり、
・ボタン$A$を押すとモニターの数字が1増える。
・ボタン$B$を押すとモニターの数字が2増える。
・ボタン$C$を押すとモニターの数字が3増える。
ボタン$A~C$をそれぞれ任意の回数押したとき、
最後に表示される数字が300以下の非負の3の倍数となるようなボタンの押し方の総数を求めよ。ただし、ボタンを押す順番は区別しない。

解答形式

例)半角数字で入力してください。

連立方程式

smasher 自動ジャッジ 難易度:
4月前

4

問題文

以下の連立方程式を満たすような実数の組$(a,b,c,d)$の個数を求めよ。
$$
\begin{cases} ab^2c^3d^4=1 \\ a^4bc^2d^3=1\\a^3b^4cd^2=1\\a^2b^3c^4d=1\end{cases}
$$

解答形式

半角数字で個数を入力してください。

第2回琥珀杯 D

Kohaku 自動ジャッジ 難易度:
9月前

10

交わらない$2$円$O_1,O_2$は直線$m$に同じ側で接しており、その反対側に交わらない$2$円$O_3,O_4$が直線$m$に接している。円$O_x(x=1,2,3,4)$の半径を$x$、直線$m$との接点を$P_x$とすると、点$P_1,P_4,P_2,P_3$がこの順に並んだ。$P_1P_4=P_2P_3=5,P_2P_4=3$のとき、四角形$O_1O_2O_3O_4$の面積を求めよ。