yes 自動ジャッジ 難易度: 数学 > 競技数学
2025年3月18日21:04 正解数: 4 / 解答数: 9 (正答率: 44.4%) ギブアップ不可

全 9 件

回答日時 問題 解答者 結果
2025年7月21日20:47 Hensachi50
正解
2025年3月23日18:20 noname
正解
2025年3月23日18:17 noname
不正解
2025年3月23日17:59 noname
不正解
2025年3月23日17:56 noname
不正解
2025年3月23日17:56 noname
不正解
2025年3月22日10:17 Tehom
正解
2025年3月20日15:08 ゲスト
不正解
2025年3月19日22:04 Nyarutann
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

JMO2025yo-6?

simasima 自動ジャッジ 難易度:
4月前

7

問題文

正の実数からなる $2$ つの数列 $a_1,a_2,...$ と $b_1,b_2,...$ があり, 任意の整数 $n$ について以下を満たしている.
$$
(a_{n+1},b_{n+1})=\left(\frac{a_n}{2},b_n+\frac{a_n}{2}\right)または(a_{n+1},b_{n+1})=\left(a_n+\frac{b_n}{2},\frac{b_n}{2}\right)が成立する.
$$
$(a_1,b_1)$ が $(7,11)$ であるとき, $a_{100}$ としてあり得る値の中で $2025$ 番目に小さいものを求めよ.

解答形式

答えの値を $x$ としたとき, $2^{100}x$ の値を解答してください.
参考:$2^{100}=1267650600228229401496703205376$

問題5

sulippa 自動ジャッジ 難易度:
12日前

3

問題文

$p, q, r $を互いに異なる3つの素数とする。

整数 $K = (qr)^{p-1} + (rp)^{q-1}+ (pq)^r$が、
$K ≡ p+q-1 (mod r)$
という条件を満たすとき、和 $p+q+r$ の最小値を求めよ。

解答形式

半角左詰め


問題文

$10^{12}$ 以下の正整数であって,$9$ の倍数または $10$ 進法表記した時どこかの桁に $9$ が現れる数はいくつありますか?

解答形式

非負整数で入力してください。

シンプルな幾何

MrKOTAKE 自動ジャッジ 難易度:
6月前

6

問題文

鋭角三角形$ABC$があり外心を$O$とする.直線$BO$と$AC$の交点を$D$とおくと$BC=BD,DO=5,AD=6$であったので$AB$の長さの$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

整数問題

Ryomanic 自動ジャッジ 難易度:
3月前

8

問題文

0,1,2,……,8 の数字から一つずつ選んでa,b,c,d,e,f,gに代入するという操作を考える。
数字の重複を許すとき、十進表記された7桁の数abcdefgが3の倍数となる確率を求めよ。
ただし、a=0の場合も認めます。
(似た問題を投稿しています。解答する場所を間違えないように注意してください。)

解答形式

互いに素な正整数p,qを用いてp/qと表せるため
p+qを解答してください。

第2回琥珀杯 D

Kohaku 自動ジャッジ 難易度:
3月前

7

交わらない$2$円$O_1,O_2$は直線$m$に同じ側で接しており、その反対側に交わらない$2$円$O_3,O_4$が直線$m$に接している。円$O_x(x=1,2,3,4)$の半径を$x$、直線$m$との接点を$P_x$とすると、点$P_1,P_4,P_2,P_3$がこの順に並んだ。$P_1P_4=P_2P_3=5,P_2P_4=3$のとき、四角形$O_1O_2O_3O_4$の面積を求めよ。

4月前

13

問題文

垂心を$H$とする鋭角三角形$ABC$があり、$AB=9,AC=11,CH=7$を満たしています。
$△AHC$の外接円を$Γ$とし、直線$BH$と$Γ$の交点のうち$H$でない点を$D$として、線分$CD$の中点を$M$とします。

線分$HM$と線分$AC$の交点を$E$としたときの、$DE$の長さの$2$乗を求めてください。

解答形式

求める値は互いに素な整数$a,b$を用いて$\dfrac{a}{b}$と表されるので、$a+b$を解答してください。

第2回琥珀杯 E

Kohaku 自動ジャッジ 難易度:
3月前

7

問題文

純循環小数(少数第一位から循環する循環小数)$x$を定義域とする関数$f(x)$を、$x$の循環部とする。ただし、循環部に0が現れ、それより大きい位に0以外の数がない場合、その0は無視するものとする。$f(\frac{5}{33})=15,f(\frac{4}{3333})=12$といった具合である。
正整数$n$に対して、$n<m<2025^{2025}$なる正整数$m$であって、$n$の値にかかわらず以下の等式を満たすものはいくつあるか。
$$f(\frac{n}{m})=(m−2)n$$
必要ならば、$$0.30102<\log_{10}2<0.30103, 0.47712<\log_{10}3<0.47713$$
を用いてよい。

abc (大数宿題2024-2)

Lim_Rim_ 自動ジャッジ 難易度:
4月前

10

問題文

$\sqrt[abc]{a! + b! + c!}$が整数となるような正の整数の組$(a,b,c)$をすべて求めよ.

解答形式

すべての組に対する $a+b+c$ の値の総和を解答してください。論証は解説を参照してください。

yes 自動ジャッジ 難易度:
4月前

11

問題文

$$
a_1 = 1,\quad a_2 = 2,\quad a_n = 5a_{n-1} - 6a_{n-2} \quad (n \geq 3)
$$

解答形式

$a_{10}$を求めなさい。

$L^\infty$空間の双対

kikutaku 採点者ジャッジ 難易度:
18日前

1

問題文

「$L^\infty$空間の双対」

区間$[0,1]$上のルベーグ可測かつ本質的に有界な実数値関数の空間$L^\infty([0,1])$において、その双対空間$(L^\infty)^*$が$L^1([0,1])$と同型でないことを示せ

解答形式

例)証明してください。

simasima 自動ジャッジ 難易度:
4月前

2

問題文

この四角に切れの解はいくつ存在しますか?
http://pzv.jp/p.html?shikaku/21/21/zzzi.z..z..z..z..z..z..z..z..z..z..z..z.9z..z..z..z..z..i

解答形式

非負整数で入力してください