四角形$ABCD$があり、次の条件を満たします。
$∠A=∠B=∠C, ∠D=135°, BC=4\sqrt{6}, CD=8$
この四角形の面積$S$は$a + \sqrt{b}$の形で表されるので、$a + b$を解答してください。
半角数字で答えをそのまま入力。
問題に不備等あればtwitterのDMなどで気軽にお願いします。 Tex初めて使いました。 問題思いつくのは簡単なんですけど、解説は未だに上手く書けませんね…
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
$AB=3$なる鋭角三角形$ABC$について, $AC$, $BC$の中点をそれぞれ$M$, $N$とすると, $AN=4$が成立した. また, 三角形$ANC$の外接円と直線$MN$との交点のうち, $N$でないほうを$D$とすると, $DC=9$が成立した. このとき, $AD$の長さの二乗は互いに素な正整数$a$, $b$を用いて$\frac{a}{b}$と表されるので$a+b$を解答せよ.
次の連立方程式において、x,yの値を求めよ ただし、x>yとする 4x²+4x-4y²=-1 x²+6x+6y=61
すべて半角でx=◯,y=◯と入力 分数は分子/分母と入力 例 x=1,y=-1/3
$AB=AC$なる二等辺三角形$ABC$について, $A$から$BC$に下した垂線の足を$H$とし, 線分$AH$上に点$P$をとると, $$ AP=5 PH=3 ∠PBC=∠PAC $$ が成立した. このとき, 三角形$ABP$の面積の2乗を解答せよ.
三角形 $ABC$ について,線分 $BC$ の中点を $M$ とし,$\angle ABC$ の二等分線と直線 $AM$ との交点を $D$ とすると,以下が成立した. $$BC=4,\angle ADB=\angle AMC=3\angle BAM$$このとき,線分 $AC$ の長さの二乗は正整数 $a,b$ を用いて $a+\sqrt b$ と表せるので,$a+b$ を解答せよ.
半角数字で入力してください。
三角形 $ABC$ について,その垂心を $H$ ,外心を $O$ とする.直線 $BH$ と直線 $AC$ との交点を $E$ ,直線 $CH$ と直線 $AB$ との交点を $F$ とすると,$3$ 点 $E,O,F$ は同一直線上にあった.$AH=8,AO=6$ のとき,四角形 $EFBC$ の面積の二乗の値を求めよ.
$P=122333444455555666666777777788888888999999999 $とする。 $P$を素因数分解せよ。
$P$の素因数の総積を半角数字で入力してください。 ただし、この問題は難しい計算をする必要がないことが保証されます。
鋭角三角形$ABC$について, 外心を$O$, 垂心を$H$とする. $B$から$AC$に下した垂線の足を$D$とすると, $$ AD=3 OH=OD BH:HC=7:18 $$ が成立した. このとき, 線分$BD$の長さの$2$乗は互いに素な正整数$a$,$b$を用いて$\frac{a}{b}$と表されるので, $a+b$を解答せよ.
鋭角三角形$ABC$について,その垂心を$H$,外心を$O$,線分$AB$,$BC$,$CA$の中点をそれぞれ$L,M,N$とします.円$OMN$と直線$LN,LO,LM$の交点のうち,$N,O,M$でないほうをそれぞれ$P,Q,R$とすると以下が成立しました. $$ AH=6,LN=4, PC\perp CR. $$ この時,線分$OQ$の長さの二乗の値は互いに素な正の整数$a,b$を用いて$\frac ab$と表せるので$a+b$を回答してください.
緑色の正方形ABCDと、紫色の正方形EFGHがあり、それぞれ1辺6cmである。点Aと点E、点Bと点F、点Cと点G、点Dと点Hがそれぞれ重なるように正方形を重ねる。(緑色の正方形が上にある。) そして辺ABを3等分する点をとり、点Aに近い方を点Iとする。また辺EFを3等分する点をとり、点Fに近い方を点Jとする。 今、緑色の正方形のみを重心を中心として回転させ、点Iと点Jが重なったところで回転を止めた。このとき、上から見える紫色の部分の面積の合計はいくらか。
答えは◯cm^2となるので、◯の部分のみを答えてください。
2年前(小6)のときにルービックキューブを触りながら作った問題です。問題文が長ったらしくて読みにくいと思いますがご了承ください。ちなみにこの問題は当時scratchにも投稿しました。
$p,q$を素数とする。 $pq(p+q)$が平方数となるものをすべて求めよ。
ありうる組$(p,q)$について$pq$の総和を半角数字で入力してください。
∮(-π/6→π/3) ((sinx)^3)/(sinx+cosx)dxの値を求めよ。
解答は π/a-(√ b+c)/d-(1/e)log(√f+g)の形になります。 a,b,c,d,e,f,gに当てはまる自然数を順に半角で答えてください。 また、1つの値の間は1つずつ空白を開けるようにしてください。 (例)a=2, b=3, c=11,d=5,e=6,f=7,g=8の場合、 2 3 11 5 6 7 8
$f(x)=\frac{3-x}{ \sqrt{3(x+2)(-2x+1)}}$ $ (-2<x<0)$ とする $f(x)$ が最小値を取るときの $x$ の値を求めよ
解答は$-\frac{㋐}{㋑}$の形で表されるので、1行目に㋐を、2行目に㋑を半角数字で入力してください