A.

JoeFight 採点者ジャッジ 難易度: 数学 > 高校数学
2025年4月2日0:00 正解数: 3 / 解答数: 5 (正答率: 60%) ギブアップ不可
この問題はコンテスト「MATHCONTEST」の問題です。

全 5 件

回答日時 問題 解答者 結果
2025年4月2日0:15 A. ir0z
正解
2025年4月2日0:14 A. yu23578
不正解
2025年4月2日0:12 A. jjmmxx3453
正解
2025年4月2日0:11 A. microbit
不正解
2025年4月2日0:05 A. Americium243
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています


98x^2+190x-312を因数分解せよ。

Circle(normal)

Weskdohn 自動ジャッジ 難易度:
8月前

2

問題文

点の定義は次をチェック(https://pororocca.com/problem/2047/)
$円X,X',ω$に接する円の内,小さい方の円$T'$の半径を求めよ.

解答形式

答えは互いに素な整数$a,b,c,d$で,$\frac{a+b√c}{d}$と書けるので,$a+b+c+d$を求めて下さい.但しd>0.
尚,半角で打ち込むこと.

指数

SOCa 自動ジャッジ 難易度:
13月前

7

問題文

aiueaiuの7字を並べるとき少なくとも1つの「ai」が「ue」よりも前にあるのは何通りか。

解答形式

例)半角英数字。

初等幾何

gurotan 採点者ジャッジ 難易度:
8月前

1

問題

解答形式

例)(1)はb√c/aとなるので、a,b,cの値をそれぞれ1,2,3行目に書いてください
⑵はdπ/eとなるので、d,eの値を4,5行目に書いてください

Circle(very easy)

Weskdohn 自動ジャッジ 難易度:
8月前

1

問題文

半径$15$の円$ω$について,ある直径$AB$を考える.
$AB$を三等分する点を順に$P,Q$とし(つまり$A・P・Q・B$の順に点が並ぶ),
$AP$を直径とする円$X$を描く.
また,$AB$に直交する直径$CD$について,同様に$R,S$を取り($C・R・S・D$の順),$CR$を直径とする円$X'$を描く.
ここで,円$X$の接線の内,$CD$と平行で且つ円$X'$側のものを直線$F$,円$X'$の接線の内,$AB$と平行で且つ円$X$側のものを直線$G$とする.
直線$F,G,$円$ω$に接する円$T$として考えられるものは$2$つあるが,そのうち小さい方の半径を求めよ.

解答形式

答えは整数$n,m,l$で$n√m+l$と書ける.
$n+m+l$を求めて下さい.
尚,マイナス含め,全て半角で打ち込むこと.

追記

続編(normal):https://pororocca.com/problem/2048/

微積分

Hensachi50 自動ジャッジ 難易度:
49日前

4

問題文

下の問題の積分の値を求めなさい。
$$ \int_0^\infty \frac{\ln(x)}{(x^2+1)^2} dx $$

解答形式

例)$-\frac{1}{2}$の場合
-1/2
と半角英数字で入力してください。

面積比

taku1729 自動ジャッジ 難易度:
8日前

5

問題文

△ABCについて、Aから直線BCに下ろした垂足をD、点Bから直線CAに下ろした垂足をE、△ABCの垂心をHとしたとき以下が成立しました。$$AH=3,AE=2,AC=5$$△AHB:△HCDは互いに素な自然数a,bを用いてa:bと表せるのでa+bの値を解答してください。

解答形式

半角数字を入力してください。


問題文

xy平面上にて、中心が直線y=3x上にあり、直線2x+y=0に接し、点(2,1)を通る円の方程式は(x-a)^2+(x-b)^2=r^2である。
a、b、r^2の値をそれぞれ求めよ。

解答方式

a○b△R□
○△□のところに答えの数字を入力してください。
r^2はRと表記してください。
a=2 b=3 r^2=4の場合
a2b3R4と入力

KOTAKE杯001没問②

MrKOTAKE 自動ジャッジ 難易度:
8月前

4

問題文

三角形$ABC$の内心を$I$,直線$AI$と$BC$の交点を$D$とすると$AI=CI=CD=6 $であった. このとき$AC$の長さは正の整数$a,b $を用いて$ \sqrt{a} +b$と表せるので, $a+b$を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

B

Nyarutann 自動ジャッジ 難易度:
2月前

19

問題文

$AD$ と $BC$ が平行であるような等脚台形 $ABCD$ において,$AB, BC, CD, DA$ の中点を $K, M, N, O$ ,$AC$ と $BD$ の交点を $E$ としたとき,以下が成り立ちました.
$$
MO=24 NE=\dfrac{\sqrt{1115}}{2} KO=20
$$このとき,四角形 $NEKO$ の面積としてあり得る値の総和を求めてください.

解答形式

答えは正整数になるので,半角数字で解答してください.

対角線の本数

noname 自動ジャッジ 難易度:
13月前

26

問題文

正$n$角形の対角線の本数が素数になるような自然数$n$を全て求めてください。

解答形式

$n$としてあり得る数を半角で小さい順に1列に1つずつ縦に解答してください。
例:2,3と答えたい時
2
3
と解答してください。

極大値

Ultimate 自動ジャッジ 難易度:
10月前

5

問題文

次の関数の極大値を求めよ。
y=|x^2-7x+10|+x

解答形式

半角数字でお願いします。