自作問題

tomorunn 自動ジャッジ 難易度: 数学 > 競技数学
2025年5月10日8:16 正解数: 7 / 解答数: 13 (正答率: 53.8%) ギブアップ数: 0

全 13 件

回答日時 問題 解答者 結果
2025年5月10日15:16 自作問題 Weskdohn
正解
2025年5月10日9:22 自作問題 Astr4ea
正解
2025年5月10日9:20 自作問題 ゲスト
正解
2025年5月10日8:44 自作問題 miq_39
正解
2025年5月10日8:37 自作問題 ゲスト
正解
2025年5月10日8:35 自作問題 ゲスト
不正解
2025年5月10日8:33 自作問題 ゲスト
不正解
2025年5月10日8:32 自作問題 ゲスト
不正解
2025年5月10日8:32 自作問題 kurao
正解
2025年5月10日8:30 自作問題 ゲスト
不正解
2025年5月10日8:30 自作問題 kurao
不正解
2025年5月10日8:21 自作問題 Nyarutann
正解
2025年5月10日8:20 自作問題 Nyarutann
不正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

整数問題 解説あり

sulippa 自動ジャッジ 難易度:
6日前

15

問題文

次の方程式を満たす、素数 $p$ と正の整数 $n, m$ の組 $(p, n, m)$ を全て求めよ。
$$ p^n + 144 = m^2 $$

解答形式

条件を満たす組中の数字の総和を半角で入力してください

WMC(E)

Weskdohn 自動ジャッジ 難易度:
15日前

23

問題文

SKG学院では,5×5のマス目を使い,とあるゲームが行われている.
ゲームのルールは以下である.
・お客さんと生徒がじゃんけんをする.勝った方が先手,負けた方が後手となる.
この時,あいこは考えないものとする.
・先手は黒の碁石,後手は白の碁石を,マスの上に交互に置いていく.
・同じマスには碁石は一つまでしか置けない.
・マス目が全て埋まった時,各行について次の条件を満たすものを特別な行と呼び,その個数を数える.
特別な辺:ある行の5マスを見た時,お客さんが置いた碁石の個数が偶数個であるもの.
・特別な行の個数が偶数であればお客さんの勝ち,奇数であれば生徒の勝ちとなる.

お客さんが勝つ確率をA,お客さんが勝つ時の碁石の置き方の総数をBとする.
A×Bの値を求めなさい.
但し,回転して重なるような碁石の置き方は区別しないとする.

解答形式

半角数字で入力して下さい.

第2回琥珀杯 C

Kohaku 自動ジャッジ 難易度:
40日前

10

$10^{n^n}$を$998$で割った余りが$512$となる最小の自然数$n$を求めよ。

D. ループ

G414xy 自動ジャッジ 難易度:
7月前

75

問題文

4x4のマスのうち1個以上に、対角線を1本ずつ引いたとき、全ての対角線がループの一部分であるものは何通りですか?
但し、「ループの一部分である」とは、
全ての対角線の端が、ちょうど1つの別の対角線の端と同位置にあることを意味します。

解答形式

半角数字で入力してください。

幾何作問練習

Lamenta 自動ジャッジ 難易度:
10月前

6

問題文

$\triangle ABC$において$AC$,$AB$の中点をそれぞれ$M$,$N$とし, 線分$BM$,$CN$上(端点を除く)にそれぞれ点$D$,$E$をとります. 直線$AD$,$AE$と線分$BC$の交点をそれぞれ$P$,$Q$としたとき,$$\frac{AP・PD}{PB}=MN-PC$$$$\frac{AQ・QE}{QC}=MN-QB$$が成立しました. $∠ADB=101°$,$∠BEN=62°$,$∠DCB=41°$のとき, $∠AED$の角度を度数法で解答してください.

解答形式

半角数字で入力してください.

過去垢の問題(整数➀)

katsuo_temple 自動ジャッジ 難易度:
6月前

7

問題文

以下の式を満たす素数の組$(a,b,c,d)$について、$abcd$の総和を求めよ。
$$
4a²+b²+c²=d²
$$

解答形式

半角数字で解答してください。

WMC(L)

Weskdohn 自動ジャッジ 難易度:
15日前

15

問題文

$10000$ 以下の正整数の組 $(x,y,z)$であって次を満たすようなものについて, $xyz$ の総和を素数 $2113$ で割ったを求めて下さい.

$$ 2113\sqrt{x^2+y^2+z^2}=25x+60y+2112z$$

解答形式

半角数字で入力して下さい.

第2回琥珀杯 D

Kohaku 自動ジャッジ 難易度:
40日前

6

交わらない$2$円$O_1,O_2$は直線$m$に同じ側で接しており、その反対側に交わらない$2$円$O_3,O_4$が直線$m$に接している。円$O_x(x=1,2,3,4)$の半径を$x$、直線$m$との接点を$P_x$とすると、点$P_1,P_4,P_2,P_3$がこの順に並んだ。$P_1P_4=P_2P_3=5,P_2P_4=3$のとき、四角形$O_1O_2O_3O_4$の面積を求めよ。

5月前

12

問題文

以下の2次方程式
$$
x^{2}-2ax+b=0 ― (*)
$$
について,自然数$n$を用いて以下の手順で係数$a,b$を定める。
$a:-n$以上$n$以下の整数が書かれたカードの中から1枚引いて書かれていた数字。
$b:-n$以上$n^{2}$以下の整数が書かれたカードの中から1枚引いて書かれていた数字。
カードを引く確率は同様に確からしいとし,できた2次方程式が実数解をもつ確率を$P(n)$とする。

$(1)$ $P(2)$の値を求めよ。

(2)~(4)は,自作場合の数・確率1-2につづく

2025/01/07追記
解説をアップデート,全員に対して公開に設定

解答形式

分母分子の順に半角数字2つを空白区切りで回答
例)$\frac{1}{2}$と答えたいときは 2 1 と回答

連続する整数の積

noname 自動ジャッジ 難易度:
2月前

8

$n$を正の整数とします。連続する$10$個の整数の積$n(n+1)(n+2)(n+3)…(n+9)$が$2025^3$で割り切れるような$n$としてあり得る最小のものを求めてください。

解答形式

$n$の値を半角で入力してください。

ハロウィンの体育

GaLLium 自動ジャッジ 難易度:
43日前

17

問題文

正整数 $n$ に対して $n^{10n}$ を $31$ で割ったあまりを $f(n)$ としたとき,
$$\sum_{k=1}^{12000} f(k)$$
の値を求めてください.

解答形式

半角英数字で回答してください.

整数問題

Ryomanic 自動ジャッジ 難易度:
39日前

10

問題文

0,1,2,……,8 の数字から一つずつ選んでa,b,c,d,e,f,gに代入するという操作を考える。
数字の重複を許さないとき、7桁の数abcdefgが3の倍数となる確率を求めよ。
ただし、a=0の場合も認めます。

解答形式

互いに素な正整数q,pを用いて
p/q と表せるため、p+qを解答してください。