KOTAKE杯005(A)

MrKOTAKE 自動ジャッジ 難易度: 数学 > 競技数学
2025年5月17日21:00 正解数: 22 / 解答数: 33 (正答率: 66.7%) ギブアップ不可
この問題はコンテスト「KOTAKE杯005(with Pomodor)」の問題です。

全 33 件

回答日時 問題 解答者 結果
2025年7月9日18:21 KOTAKE杯005(A) kitaaa
正解
2025年7月9日18:21 KOTAKE杯005(A) kitaaa
不正解
2025年6月14日0:59 KOTAKE杯005(A) arufa
正解
2025年6月14日0:54 KOTAKE杯005(A) arufa
不正解
2025年6月14日0:47 KOTAKE杯005(A) arufa
不正解
2025年6月14日0:45 KOTAKE杯005(A) arufa
不正解
2025年6月14日0:40 KOTAKE杯005(A) arufa
不正解
2025年6月14日0:39 KOTAKE杯005(A) arufa
不正解
2025年5月20日11:00 KOTAKE杯005(A) ゲスト
正解
2025年5月19日7:20 KOTAKE杯005(A) ゲスト
正解
2025年5月18日11:28 KOTAKE杯005(A) nmoon
正解
2025年5月18日10:25 KOTAKE杯005(A) arare_arare
正解
2025年5月17日23:02 KOTAKE杯005(A) 0__citrus
正解
2025年5月17日22:58 KOTAKE杯005(A) Asibara
正解
2025年5月17日22:48 KOTAKE杯005(A) yuyusama
正解
2025年5月17日22:42 KOTAKE杯005(A) Americium243
正解
2025年5月17日22:13 KOTAKE杯005(A) atawaru
正解
2025年5月17日21:50 KOTAKE杯005(A) Americium243
不正解
2025年5月17日21:40 KOTAKE杯005(A) Nyarutann
正解
2025年5月17日21:36 KOTAKE杯005(A) wasab1
正解
2025年5月17日21:28 KOTAKE杯005(A) Nyarutann
不正解
2025年5月17日21:24 KOTAKE杯005(A) Tonjiru
不正解
2025年5月17日21:19 KOTAKE杯005(A) Mid_math28
不正解
2025年5月17日21:14 KOTAKE杯005(A) offbeat
正解
2025年5月17日21:12 KOTAKE杯005(A) notused
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

KOTAKE杯005(C)

MrKOTAKE 自動ジャッジ 難易度:
2月前

23

問題文

鋭角三角形 $ABC$ があり, $B$ から $AC$ への垂線の足を $D$ とし,重心を $G$ ,垂心を $H$ とする.このとき $4$ 点 $B,C,G,H$ は共円であり$AD=3,CD=5$であったので, $AB$ の長さの $2$ 乗を解答せよ.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.
Writer: MrKOTAKE

KOTAKE杯005(B)

MrKOTAKE 自動ジャッジ 難易度:
2月前

23

問題文

三角形 $ABC$ があり, $ \angle ACB$ の二等分線と $AB$ の交点を $D$ とし,線分 $BC$ 上に点 $P$ ,線分 $AC$ 上に点 $Q$ をとると相異なる $4$ 点 $A,C,D,P$と$B,C,D,Q$ はそれぞれ共円であり $CP=3,CQ=4,AB=15$ が成立した.このとき三角形 $ABC$ の面積の $2$ 乗を解答せよ.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.
Writer: MrKOTAKE

KOTAKE杯005(D)

MrKOTAKE 自動ジャッジ 難易度:
2月前

16

問題文

$AB=5, AC=8, \angle A=60^{\circ}$ なる三角形 $ABC$ について,外接円の $A$ を通らない弧 $BC$ の中点を $M$ とする.相異なる $4$ 点 $P,Q,B,C$ がこの順で同一直線上に並び,$\angle APB:\angle MPB=\angle AQB:\angle MQB=3:1$ が成立した.線分 $PQ$ の長さは互いに素な正の整数 $a, b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ を解答せよ.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.
Writer: pomodor_ap

KOTAKE杯005(F)

MrKOTAKE 自動ジャッジ 難易度:
2月前

20

問題文

$AB<AC$ なる三角形 $ABC$ について,$AB=AD$ なる線分 $BC$ (端点を含まない) 上の点を $D$,円 $ABD$ と線分 $AC$ の交点を $E(\neq A)$,円 $BEC$ と線分 $AD$ の交点を $F$ とする.
直線 $BF$ と円 $FDC$ が再び交わる点を $P$ とすると,$AP\parallel BC$ かつ $PE=5, BC=12$ が成立したとき,$AB$ の長さの二乗は互いに素な正の整数 $a, b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ を解答せよ.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.
Writer: pomodor_ap

KOTAKE杯005(E)

MrKOTAKE 自動ジャッジ 難易度:
2月前

14

問題文

$AB<AC$ なる鋭角三角形 $ABC$ について垂心を $H$ とし,三角形 $ABC$ の外接円と直線 $BH$ ,直線 $CH$ の交点をそれぞれ $(D\neq B),E(\neq C)$ とする.半直線 $DE$ と直線$BC$の交点を$P$とすると,三角形 $AEH$ の外接円は直線 $HP$ に点 $H$ で接し, $PH=3,AE=4$ であった.このとき線分 $AB$ の長さの $2$ 乗は互いに素な正の整数 $a, b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ を解答せよ.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.
Writer: MrKOTAKE

KOTAKE杯004(C)

MrKOTAKE 自動ジャッジ 難易度:
5月前

24

問題文

$∠A$が鋭角であり$AB=AD,BC=CD=7,∠ABC=∠CDA=90°$を満たす四角形$ABCD$がある.線分$AB$,線分$AD$の中点をそれぞれ$M,N$とし,直線$MN$と直線$BC$の交点を$P$とすると$AP=24$であったので$AC$の長さの$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯004(B)

MrKOTAKE 自動ジャッジ 難易度:
5月前

22

問題文

垂心を$H$とする鋭角三角形$ABC$があり
$AB \cdot CH=30,BC \cdot AH=28,CA \cdot BH=26$
が成立したので$AC$の長さの$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

PDC005 (B)

pomodor_ap 自動ジャッジ 難易度:
2月前

30

$\angle B=90^{\circ}$ なる直角三角形 $ABC$ について,線分 $AC$ の中点を $M$ とし,内部に $PM\parallel BC$ なるように点 $P$ を取り,三角形 $BPM$ の外接円と三角形 $ABC$ の外接円が再び交わる点を $X$ とする.$AP=5, PM=8, MA=10$ が成り立っているとき,線分 $PX$ の長さは互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ を解答せよ.

KOTAKE杯004(A)

MrKOTAKE 自動ジャッジ 難易度:
5月前

24

問題文

$AB<BC$なる鋭角三角形$ABC$があり,$B$から$AC$におろした垂線の足を$D$とし,線分$BC$の中点を$M$とする.三角形$ABC$の外接円上に点$E,F$をとると$4$点$EDMF$はこの順に同一直線上に存在し,$DE=6,MF=8,CD=15$であったので線分$AB$の長さの$2$乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯007(H)

MrKOTAKE 自動ジャッジ 難易度:
6日前

36

問題文

$AB=15,AC=20$ の鋭角三角形 $ABC$ があり,辺 $AC$ 上に $AB=AD$ となる点 $D$ をとります.線分 $BD$ の中点を $M$ とすると三角形 $ADM$ の外接円は直線 $CM$ に点 $M$ で接したので線分 $BC$ の長さの $2$ 乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯007(D)

MrKOTAKE 自動ジャッジ 難易度:
6日前

36

問題文

三角形 $ABC$ において内接円と辺 $BC,CA,AB$ の接点をそれぞれ $D,E,F$ とします.直線 $AD$ と三角形 $ABC$ の外接円の交点のうち $A$ でないものを $G$ とすると,
$$DG=BF,\quad AD=9,\quad AF=4$$
が成立したので線分 $DE$ の長さの $2$ 乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯007(E)

MrKOTAKE 自動ジャッジ 難易度:
6日前

41

問題文

$AB<AC$ なる三角形があり,辺 $BC$ の中点を $M$ とし直線 $AM$ と三角形 $ABC$ の外接円との交点のうち $A$ でないものを $D$ とすれば,
$$AB=BD,\quad AM=3,\quad CD=2$$
が成立したので線分 $BC$ の長さの $\mathbf{4}$ 乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.