三角形 $ABC$ の線分 $BC$ の中点を $M$ とし,線分 $AB$ 上に点 $P$ をおくと $AP=2,AM=5,CP=4, \angle ACP= \angle BPM$ であったので,線分 $BC$ の長さの $2$ 乗を解答せよ.
答えは正の整数値となるので,その整数値を半角で入力してください.
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
三角形 $ABC$ があり内部に点 $D$ をとり,直線 $AD$ と $BC$ の交点を $E$ とすると $\angle ABD=\angle BCD,AD=DE=3,BE=2,CE=9$ であった.このとき $AC$ の長さの $2$ 乗を解答せよ.
三角形$ABC$があり,また点$C$を通る点$B$で$AB$に接する円$O$がある.円$O$上でありかつ 三角形$ABC$の内部に$BD=CD$となる点$D$をとり$AC$と円$O$の交点のうち$C$でないものを$E$とおくと $AB=15,BC=10,DE=16$であった.このとき$AC$の長さの$2$乗は互いに素な正整数$a,b$によって$\frac{a}{b} $と表されるので$a+b$の値を解答してください. ただし点$A,C,E$は$ACE$の順に一直線上に並んでいるものとする.
$\triangle{ABC}$ は $AB=AC,∠{BAC}=40°$ を満たす。線分$BC$の中点$M$と$\triangle{ABC}$の内部の点$P$について、直線$AM$に関して直線$PM$を対称移動させた直線を$m$、$m$と直線$AP$の交点を$Q$とすると、$PB>PC,∠BPC=110°,∠AQM=15°$を満たしました。このとき、$∠PBC$の大きさを度数法で求めてください。ただし、答えは互いに素な正の整数$a,b$を用いて$(\dfrac{a}{b})°$と表されるので、$a+b$ を解答してください。
例)半角数字で入力してください。
$AB=AC$なる鋭角二等辺三角形$ABC$において$AB$,$BC$の中点をそれぞれ$M$,$N$とし、$MC$の垂直二等分線と$AN$の交点を$P$とします。$\triangle ABC$の面積は$15$であり、$AP:PN=4:1$であるとき、$BC^4$を解答してください。
半角数字で解答してください。
△ABCにおいて、垂心をH、外心をOとするとAB//HOであった。このとき、∠Cの角度としてあり得る値の範囲を求めてください。 ただし、OとHが一致する場合は除きます。
∠Cの範囲は度数法で表すと、$(0°<)\alpha°<C<\beta°(<180°)$となります。 $\alpha+\beta$を半角数字で解答してください。
半円と平行四辺形が図のように配置されています。赤い三角形の面積が3のとき、青い線分の長さを求めてください。 ※平行四辺形の一辺と半円は接する。
$$x=\fbox{ア}\sqrt{\fbox{イウ}-\fbox エ\sqrt{\fbox オ}}$$と表せるので、文字列 アイウエオ を解答してください。ただし、$\fbox ア~\fbox オ$には0以上9以下の整数が入ります。
$\angle ABC $ と $\angle BCA$ が鋭角であるような $\triangle ABC$ について,辺 $BC$ の中点を $M$ とします.また,$M$ から辺 $AB,AC$ におろした垂線の足をそれぞれ $P, Q$ とすると、線分 $AM, BQ, CP$ が一点で交わります.
$$ AB = 12, \ \ BC= 20 $$
のとき,$\triangle ABC$ の面積の二乗としてありうる値の総和を解答してください。
答えは正の整数値となるので, その整数値を半角で入力してください.
円に内接する $8$ 角形 $ABCDEFGH$ が $\angle{A}=121^{\circ},\angle{B}=122^{\circ},\angle{C}=123^{\circ},\angle{D}=124^{\circ},\angle{E}=125^{\circ},\angle{F}=126^{\circ}$ を満たすとき,$\angle{G}$ の大きさを度数法で解答してください.
半角数字で解答してください.
三角形 $ABC$ において,$A,B,C$ から対辺に下ろした垂線の足を $D,E,F$ とし,三角形 $ABC$ の垂心を $H$ としたところ,$DE=9,DF=8,DH=7$ となりました. このとき,$AH$ の長さは互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表されるので,$a+b$ の値を解答してください.
$5\times5$ のマス目の異なる $2$ つのマスにナイトの駒を $1$ つずつ置き,「ナイトの駒の動きに従って $2$ つの駒を同時に動かす」という操作を繰り返したところ,$2$ つの駒が同じマスに止まりました. このとき,最初にナイトの駒を置いた $2$ マスの組み合わせとしてあり得るものの総数を求めてください.
$\triangle ABC$において$AC$,$AB$の中点をそれぞれ$M$,$N$とし, 線分$BM$,$CN$上(端点を除く)にそれぞれ点$D$,$E$をとります. 直線$AD$,$AE$と線分$BC$の交点をそれぞれ$P$,$Q$としたとき,$$\frac{AP・PD}{PB}=MN-PC$$$$\frac{AQ・QE}{QC}=MN-QB$$が成立しました. $∠ADB=101°$,$∠BEN=62°$,$∠DCB=41°$のとき, $∠AED$の角度を度数法で解答してください.
半角数字で入力してください.
正方形と正三角形を組み合わせた以下の図において、青で示した角の大きさを求めてください。
半角数字で解答してください。 解答は度数法で、単位を付けずに0以上180未満の整数として解答してください。