第1問

sulippa 自動ジャッジ 難易度: 数学
2025年5月30日21:30 正解数: 5 / 解答数: 5 (正答率: 100%) ギブアップ数: 0
この問題はコンテスト「代数 全3問」の問題です。

問題文

3次の多項式 $P(x)$ は整数係数を持ち、すべての係数が整数であるとする。
0 でないある整数 $M$ について、$P(x)$ は以下の条件を満たす。
$kP(k) = M (k=1, 2, 3, 4)$
このとき、M が取りうる最小の正の整数値を求めよ。

解答形式

半角でスペースなし


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています


問題

複素数の定数 $\alpha$ に対し、$|z- \alpha\bar{z}|\leq1-|\alpha|^2$ を満たす複素数 $z$ 全体の集合を $D$ とおく。以下の解答欄を埋めよ。

(1)$\alpha=0$ のとき、$D$ は複素数平面上で原点を中心とする半径 $\fbox{ア}$ の円の周上および内部になる。

次に $|\alpha|>0$ の場合を考える。以下、$\displaystyle \arg \alpha=\frac{6}{11}\pi$ とする。

(2) $|\alpha|=1$ のとき、$D$ は複素数平面上で原点を通る直線となり、偏角が $\displaystyle \frac{\fbox{イ}}{\fbox{ウエ}}\pi,\ \frac{\fbox{オカ}}{\fbox{キク}}\pi$ であるような複素数を全て含む。ただし $0\leq \displaystyle \frac{\fbox{イ}}{\fbox{ウエ}}\pi < \frac{\fbox{オカ}}{\fbox{キク}}\pi<2\pi$ とする。

(3) $0<|\alpha|<1$ の場合を考えよう。原点を中心として $z$ を反時計回りに $\displaystyle -\frac{\fbox{イ}}{\fbox{ウエ}}\pi$ だけ回転させた複素数を $w$ とおく(ただし $z=0$ のときは $w=0$ とする)。$z$ が $|z- \alpha\bar{z}|\leq1-|\alpha|^2$ を満たして動くときに $w$ が動く領域について考察することで、$D$ に対応する複素数平面上の図形が明らかになる。特に $|\alpha|=0.4$ のとき、$D$ の面積は $\displaystyle\frac{\fbox{ケコ}}{\fbox{サシ}}\pi$ である。

解答形式

解答欄ア〜シには、それぞれ0から9までの数字が1つ入る。同じカタカナの解答欄には同じ数字が入る。

(1)の答えとして、文字「ア」を半角で1行目に入力せよ。

(2)の答えとして、文字列「イウエオカキク」を半角で2行目に入力せよ。

(3)の答えとして、文字列「ケコサシ」を半角で3行目に入力せよ。

なお、分数はできるだけ約分された形となるように答えること。

第3問

sulippa 自動ジャッジ 難易度:
7月前

13

問題

$P(x)$ は整数係数の monic な (最高次の係数が1の) 3次多項式 であるとする。方程式 $P(x) = 0$ は、相異なる3つの整数解を持 つことが分かっている。
$P(0)=6$
$P(1)=4$
のとき、$P(4)$の値を求めよ。

解答形式

半角でスペースなし


問題

半径 $1000$ の円の形をした平坦な地形の島がある。この島を訪れたトレジャーハンターのアリスは、この島のある $1$ 点 $\mathrm{T}$ の真下に宝が埋まっていることは知っているが、$\mathrm{T}$ の位置は知らない。アリスは、自分のいる地点と $\mathrm{T}$ との距離を正確に測る探知機を使って $\mathrm{T}$ にたどり着こうとしている。

はじめ、アリスは島の中心点 $\mathrm{A_0}$ にいる。この後、アリスはターン制で行動を繰り返す。$n=1,2,\ldots$ に対し、$n-1$ ターン目の行動が終わった後のアリスの位置を $\mathrm{A_{n-1}}$ とする。$n$ ターン目でアリスは以下の行動をとる:

$n$ ターン目の行動:
アリスは、今いる地点 $\mathrm{A_{n-1}}$ からちょうど距離 $1$ だけ離れた点 $\mathrm{A_{n}}$ に移動する。その後、探知機を使って線分 $\mathrm{TA}_n$ の長さ $d_n$ を正確に測る。

さて、あるターンで $d_n=0$ となった時、アリスは今いる地点の真下を掘り起こして宝を見つける。$\mathrm{T}$ の位置にかかわらず、アリスがうまく行動すれば $N$ ターン目で確実に宝を見つけることができるような正の整数 $N$ の最小値を求めよ。

解答形式

半角数字のみで1行目に入力せよ。

整数問題(1)

tsukemono 自動ジャッジ 難易度:
17月前

10

問題文

$504$と自然数$x$との最大公約数を$g$, 最小公倍数を$l$とする。$504$の正の約数の個数を$n$としたとき、$g$の正の約数の個数は$\frac{n}{3}$、$l$の正の約数の個数は$\frac{9n}{2}$であった。$x$の素因数が$2,3,5,7$であるとき、$l$の値を求めよ。

解答形式

半角算用数字で答えてください。

二等辺三角形と最小値

smasher 自動ジャッジ 難易度:
3月前

4

問題文

$AB=BC$で、面積が$2025$であるような二等辺三角形$ABC$がある。$AB(=BC)$の最小値を求めよ。

解答形式

半角数字で$AB^2(=BC^2)$の値を入力してください。

自作3

tomorunn 自動ジャッジ 難易度:
7月前

5

問題文

モニターに0が表示されている。ここには3つのボタンがあり、
・ボタン$A$を押すとモニターの数字が1増える。
・ボタン$B$を押すとモニターの数字が2増える。
・ボタン$C$を押すとモニターの数字が3増える。
ボタン$A~C$をそれぞれ任意の回数押したとき、
最後に表示される数字が300以下の非負の3の倍数となるようなボタンの押し方の総数を求めよ。ただし、ボタンを押す順番は区別しない。

解答形式

例)半角数字で入力してください。

7月前

3

3辺の長さがそれぞれ自然数の三角形であり、3辺の長さの合計が1200になるという。このような条件を満たす三角形の個数を求めよ。

三角関数

tan 自動ジャッジ 難易度:
5月前

4

問題文

$\alpha$を$0<$$\alpha$$<\frac{\pi}{6}$をみたす実数とします。
tan$\alpha$ , tan$2\alpha$ , tan$3\alpha$ がこの順に等比数列をなすような$\alpha$の値は$\frac{\pi}{n}$の形で表されます。$n$を答えてください。

解答形式

半角数字で答えてください

連立方程式

smasher 自動ジャッジ 難易度:
4月前

4

問題文

以下の連立方程式を満たすような実数の組$(a,b,c,d)$の個数を求めよ。
$$
\begin{cases} ab^2c^3d^4=1 \\ a^4bc^2d^3=1\\a^3b^4cd^2=1\\a^2b^3c^4d=1\end{cases}
$$

解答形式

半角数字で個数を入力してください。

20月前

7

問題文

図のような、一目盛りが1cmの方眼に書いた図形があります。三角形ABCと三角形ACEは合同で、角ADF=90°です。DFは何cmですか。

解答形式

四捨五入して小数第2位まで、半角数字で答えてください。
例)$\frac{52}{3}$→17.33

組み合わせ

suth 自動ジャッジ 難易度:
7月前

10

1から2pの2p個の異なる自然数を全て並べる時に隣り合う二つの積が常に偶数になる通りをSpとするとき、それがpで最大何回割れるか答えろ.
(ただしpは素数とする)

(半角の自然数が答え)

問題2

sulippa 自動ジャッジ 難易度:
6月前

5

問題文

整数 $x$ と素数 $p$ が、以下の連立合同式を満たす。

$x \equiv p \pmod{9797}$
$x \equiv 11p + 69 \pmod{9991}$

この条件を満たす最小の素数 $p$ を求めよ。

解答形式

半角左詰め