3次の多項式 $P(x)$ は整数係数を持ち、すべての係数が整数であるとする。 0 でないある整数 $M$ について、$P(x)$ は以下の条件を満たす。 $kP(k) = M (k=1, 2, 3, 4)$ このとき、M が取りうる最小の正の整数値を求めよ。
半角でスペースなし
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
$504$と自然数$x$との最大公約数を$g$, 最小公倍数を$l$とする。$504$の正の約数の個数を$n$としたとき、$g$の正の約数の個数は$\frac{n}{3}$、$l$の正の約数の個数は$\frac{9n}{2}$であった。$x$の素因数が$2,3,5,7$であるとき、$l$の値を求めよ。
半角算用数字で答えてください。
複素数の数列$\lbrace z_{n}\rbrace (n=0, 1, 2, ...)$は $$ z_{n+1}=\left\lvert\frac{z_{n}+\bar{z_{n}}}{2}\right\rvert z_{n} (n=0,1,2,...) $$ を満たしている。このとき,$\displaystyle \lim_{n\to \infty}z_{n}$が収束するような$z_{0}$の存在範囲を複素数平面上に図示せよ。
この存在範囲を数式で表現してください。最も簡単な1つの等式あるいは不等式を用いてください。
1から2pの2p個の異なる自然数を全て並べる時に隣り合う二つの積が常に偶数になる通りをSpとするとき、それがpで最大何回割れるか答えろ. (ただしpは素数とする)
(半角の自然数が答え)
$P(x)$ は整数係数の monic な (最高次の係数が1の) 3次多項式 であるとする。方程式 $P(x) = 0$ は、相異なる3つの整数解を持 つことが分かっている。 $P(0)=6$ $P(1)=4$ のとき、$P(4)$の値を求めよ。
$a^2+b^2+c^2+d^2+e^2=13053769$を満たす自然数$(a,b,c,d,e)$の組を1つ求めよ。ただし、$a<b<c<d<e$とする。
a,b,c,d,e,fの順で、間を半角スペースで区切り解答してください。 (例)$(a,b,c,d,e)=(1,2,3,4,5)$だった場合 →1 2 3 4 5
$P(x)$ は整数係数の3次多項式である。 すべての整数$ n $に対して、$P(n)+1$ は常に立方数となるとする $P(0)=7$ および $P(1)=26$ が成立している。 このとき、$P(2)-P(-1)$ の値を求めよ。
半角スペースなし
下の問題の積分の値を求めなさい。 $$ \int_0^\infty \frac{\ln(x)}{(x^2+1)^2} dx $$
例)$-\frac{1}{2}$の場合 -1/2 と半角英数字で入力してください。
素数 $p$ と正の整数 $n$ が、以下の等式を満たすとします。 $$\frac{n^2+np+p^2}{n+p} = 2p-1$$ このような組 $(n,p)$ を全て求めてください。
解が有限個であるとされた場合は、全ての解と、それ以外に解が存在しないことの証明を、簡単で構わないのでお願いします。無限個とされた場合は証明いらないので、何らかの形で解を表してください。証明に完全性がないと見なした場合は、採点機能がない都合上、99点をあげたいところも不正解とさせていただきます
正の実数からなる $2$ つの数列 $a_1,a_2,...$ と $b_1,b_2,...$ があり, 任意の整数 $n$ について以下を満たしている. $$ (a_{n+1},b_{n+1})=\left(\frac{a_n}{2},b_n+\frac{a_n}{2}\right)または(a_{n+1},b_{n+1})=\left(a_n+\frac{b_n}{2},\frac{b_n}{2}\right)が成立する. $$ $(a_1,b_1)$ が $(7,11)$ であるとき, $a_{100}$ としてあり得る値の中で $2025$ 番目に小さいものを求めよ.
答えの値を $x$ としたとき, $2^{100}x$ の値を解答してください. 参考:$2^{100}=1267650600228229401496703205376$
次の極限を求めてください。 $$\lim_{n\rightarrow\infty}\sum_{k=0}^n\frac{{}_nC_k}{(k+1)(n+1)^k}$$
解答に分数や特殊な文字、累乗を使用したい場合はTeX記法に則ってください。$は必要ありません。
以下の関数$f(x)$の最小値の$2$乗を求めてください。($x$は実数)
$$ \begin{align} f(x)= \ &\bigg\{48\lim_{N\rightarrow\infty}\Bigg(\sum_{k=0}^{N}\frac{\sqrt{N^2+k^2}}{N^2}\Bigg)-12\log\big(3+2\sqrt{2}\big)\bigg\}x^4\\ &+\sqrt{2} \ d\Bigg(\sum_{n=10}^{20}{}_n\mathrm{C}_{10}\Bigg)x^3-\bigg\{\max_{\theta\in\mathbb{R}}\bigg|\begin{pmatrix}96\\96\sqrt{7}\end{pmatrix}\cdot\begin{pmatrix}\cos\theta\\\sin\theta\end{pmatrix}\bigg|\bigg\}x^2\\ &-768\sqrt{2}\Bigg(\mathrm{Re}\sum_{m=0}^{\infty}\Big\{2^{-\frac{m}{2}}\Big(\cos\frac{m\pi}{12}+i\sin\frac{m\pi}{12}\Big)\Big\}-\frac{\sqrt{3}}{2}\Bigg)x+120\sqrt{2} \end{align} $$
ただし、$d(n)$は約数個数関数、縦書きの()はベクトル、$|A|$は絶対値、$\max_{\theta\in\mathbb{R}}f(\theta)$は$\theta$を実数範囲で動かしたときの$f(\theta)$の最大値、$\mathrm{Re}(z)$は$z$の実部を表します。
非負整数を半角英数字で入力してください。
$AB<AC$ で,線分 $AB,AC$ の長さが正整数値である三角形 $ABC$ について,半直線 $CB$ 上で線分 $BC$ 上でないところに点 $D$ ,半直線 $BC$ 上で線分 $BC$ 上でないところに点 $E$ をそれぞれ置く.また,三角形 $ADE$ の外接円と直線 $AB,AC$ との交点のうち,$A$ でないほうをそれぞれ $P,Q$ とする.$4$ 点 $B,P,Q,C$ が同一円周上にあり,$DB=9,BC=45,CE=5$ のとき,線分 $PQ$ の長さとしてあり得る値の総和は互いに素な正整数 $a,b$ を用いて $\displaystyle\frac{a}{b}$ と表せるので,$a+b$ を解答してください.
半角数字で入力してください。