U={2,3,5,7,9,11,}を全体集合とする 集合Aを A={n+1,n+2…}とする
3<n≤n+1<11 を解き、不等式を満たすnに対し、いずれのnにおいても常に存在するAとUの共通部分を求めよ
A共通部分Bイコール イコールの先に数字を入れる
集合を作る
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
式1の時、式2の解を求めよ。 ただし、数の小さい順に答え、 答えが2つ以上ある場合、「,」を用いること。 例 2分の1と1の時は、1/2,1
$$ 12a^{2}-a=1 $$
$$ 16a^{2}-8a-9a^{2}-6a $$
$n$を整数とする。$n^{8}-n^{2}$を割り切る最大の自然数を求めよ。
半角数字で入力してください。
$P(x)$ は整数係数の3次多項式である。 すべての整数$ n $に対して、$P(n)+1$ は常に立方数となるとする $P(0)=7$ および $P(1)=26$ が成立している。 このとき、$P(2)-P(-1)$ の値を求めよ。
半角スペースなし
次の問題のxとyを求めてください。
3x➕2y🟰x➖y🟰2x➖3y➖7
x=○○、y=○○ の形で回答してください。 xとyは小文字です。 マイナスが付く場合はひらがなの延ばし棒を記入してください。
tan1°は有理数か
はいorいいえで答えてね!
(解答が間違っていました。すみませんでした。修正しました.)
次の式を計算しなさい。
$$ \frac{(28^{2}+28-27^{2}+27)^{2}}{5!^{2}}-(\frac{11}{12})^{2} $$
$$ 4a^{2}-4a=-1 $$
$$ (2a-2)^{10000} $$
正整数$n$の値を無作為に定めるとき、$\sqrt{n}^\sqrt{n}$が有理数となる確率を求めよ。
0または1の場合はそのまま答え、互いに素な正整数$a,b$を用いて$\frac{b}{a}$と表せる場合は$ab$を解答してください。
$\log_227$の整数部分を答えよ
各位の和が $14$ であるような $2$ 番目に小さい正の整数を求めよ.
実数 $a,b$ が $a+b=10$ を満たすとき,$a^3+b^3$ の最小値を求めてください.
半角数字で解答してください.
$n$ を正の整数とする。$f(n)=\sqrt{n^4+2n+61\ }$ が整数となるような $n$ を $1$ つ選び、そのときの $f(n)$ の値を答えよ。
なお、$f(n)$ が整数とならない場合や、答えた $f(n)$ の値が正しくない場合は不正解とする。
正解した場合は、まず解説を見よ。また、他のユーザーの回答も見てみよ。
あなたが選んだ $n$ における $f(n)$ の値を半角数字で1行目に入力せよ。