解いてください

Conkom1910615 ジャッジなし 難易度: 数学
2025年7月9日21:59 解答数: 3 ギブアップ不可

問題文

全ての自然数に対し、偶数の時は2で割り、奇数の時は1を足して2で割る操作を繰り返すと必ず1になることを証明せよ。

解答形式

特に指定はなし。


スポンサーリンク

解答提出

この問題はジャッジなしの問題です。 提出された答案に対して採点は行われません。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

原始ピタゴラ数

O.K 採点者ジャッジ 難易度:
37日前

1

問題文

$$
a²+b²=c²,gcd(a,b,c)=1
$$
を満たす自然数a,b,cが存在するとき
任意の自然数tに対して
$$
aₜ²+bₜ²=c²ᵗ,gcd(aₜ,bₜ)=1
$$
を満たす自然数aₜ,bₜが存在することを示せ

解答形式

例)ひらがなで入力してください。

200A

Nyarutann 自動ジャッジ 難易度:
9日前

7

問題文

正整数値に対して定義され正整数値をとる関数 $f(x)$ は,任意の正整数 $a, b, c$ において,以下を満たしました.
$$
f(a)+f(b)+f(c)=f(abc)+2
$$また,$f(15)=15$ を満たすとき,$f(2025)$ としてあり得る値の総和を求めてください.

解答形式

半角数字で解答してください.

円周率 1

hinu ジャッジなし 難易度:
5年前

5

問題文

$\pi$ が $\dfrac{1000\pi}{1001}\risingdotseq 3.13845\cdots$ よりも大きいことを示せ

自作問題

tomorunn 自動ジャッジ 難易度:
3月前

23

問題文

(10進法で)正の整数を書き、各桁の数字を赤か青に塗ったものを色付き整数と定義する。
例えば、57という数字を色付き整数で表すと、5,7をそれぞれ赤、青に塗るかのそれぞれ2通りあるので4通りの表し方がある。
次の条件を満たす色付き整数の個数を求めよ。
・各桁の数の総和が10である。
・どの桁にも0は使われていない。

解答形式

半角整数で入力してください。

問題1

sulippa 自動ジャッジ 難易度:
24日前

17

問題文

$3^{2025}$を $11$ で割った余りを求めよ。

解答形式

半角左詰め

円周率 2

hinu ジャッジなし 難易度:
5年前

19

問題文

$\pi$ と $\sqrt{2}+\sqrt{3}$ はどちらが大きいか。

知ってたら簡単な整数問題

noname 自動ジャッジ 難易度:
17月前

23

${999}$を2以上の最小の$2$つの立方数の差で表せ。

問題を一部訂正しました。毎度毎度誠に申し訳ございません。問題ミスがあったためこれまでの解答は正解にしました。

解答形式

a>b>1の自然数を用いてa^3-b^3というふうに表せるのでabと2つの整数を連続して半角で書いてください。
(例:15^3-3^3なら解答は153)

常に無理数か?

hinu 自動ジャッジ 難易度:
5年前

94

問題

(1) $a,b$ を整数でない正の有理数とする。 $a^b$ は常に無理数か。

(2) $a$ を整数でない正の有理数とする。 $a^a$ は常に無理数か。

(3) $a,b$ を正の無理数とする。 $a^b$ は常に無理数か。

(4) $a$ を正の無理数とする。 $a^a$ は常に無理数か。

解答方法

解答欄に改行区切りで O (オー)または X (エックス)を記述せよ。正解判定は各行に対して行われ、完答のみ正解となる。

Sandwich+

baba 自動ジャッジ 難易度:
5年前

9

問題文

https://pororocca.com/problem/19/
こちらの問題の設定で,「裏裏裏裏裏表表表表表」というピザの塔ができるような調理は何通りあるか答えなさい.

解答形式

半角数字で入力してください.

hinu積分02

hinu 採点者ジャッジ 難易度:
5年前

1

問題

(1) 定積分

$$
\int_0^1 \frac{x\log x}{(x+1)^2}dx
$$

の値を求めよ。

(2) 関数列 ${f_n(x)}$ を

$$
f_{n+1}(x)=(x^x)^{f_n(x)},\quad f_1(x)=x^x
$$

で定める。定積分

$$
\int_0^1(x^x)^{{(x^x)}^{(x^x)\cdots}}dx:=\int_0^1\lim_{n\to \infty} f_n(x)\ dx
$$

の値を求めよ。ただしテトレーション $x^{{x^{x\cdots}}}$ は底 $x$ が $e^{-e}<x<e^{1/e}$ のとき収束することは証明せずに用いて良い。

備考

この問題の正解判定は出題者により手動で行われるため、判定までに時間がかかることがある。

hinu問題02

hinu 自動ジャッジ 難易度:
5年前

45

問題文

$a,b,c$ を実数とする。次の連立方程式を解け。

$$
a^2-4b-1=0\\
b^2-8c+28=0\\
c^2-6a+2=0\\
$$

解答形式

a,b,cを半角数字として(a,b,c)で解答してください。無理数などを使いたい場合はTeXコマンドを使用してください。

Vo Sequence

halphy 自動ジャッジ 難易度:
5年前

13

問題文

「ボ」と「ー」からなる文字列のうち,以下の条件を満たすものをボー文字列と呼ぶことにします.


条件:長音記号「ー」が文字列の先頭にくることはなく,連続して現れない.


例えば,「ボボー」や「ボーボボ」はボー文字列ですが,「ーボー」や「ボボーー」はボー文字列ではありません.

ボー文字列に対して,次の操作を行うことを考えます.


操作:ボー文字列に対して,次のうちいずれか一方を行う.

  • (A)文字列のどこか1ヶ所に長音記号「ー」を付け加える.
  • (B)文字列の末尾に「ボ」を付け加える.

ただし,得られた文字列はボー文字列でなければならない.


1文字「ボ」から始めて,ボー文字列に対してくり返し操作を行い $n$ 文字からなるボー文字列が得られたとします.異なる操作の仕方の総数を $a_n$ とするとき,$a_{10}$ を求めなさい.

解答形式

半角数字で入力してください。