基礎チェック(整数)

ona 採点者ジャッジ 難易度: 数学
2025年8月2日18:12 正解数: 1 / 解答数: 2 (正答率: 100%) ギブアップ不可

全 2 件

回答日時 問題 解答者 結果
2025年8月8日23:58 基礎チェック(整数) Ichijo
正解
2025年8月8日23:33 基礎チェック(整数) Ichijo
未採点

おすすめ問題

この問題を解いた人はこんな問題も解いています

指数・対数といろいろ

hi-yo 自動ジャッジ 難易度:
4月前

1

$$
-|-log_\sqrt{a}{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{a}^{32}}}}}}|
$$

7進法の循環小数

AS 自動ジャッジ 難易度:
7月前

3

$n$ を自然数として $\displaystyle\frac1n$ と表される数全体の集合を $A$ とする.また,$A$ の要素のうち,$7$ 進法で小数展開したとき,小数点以下が基本周期 $3$ の数字の列で表される循環小数となるもの全体の集合を $B$ とする.
このとき,$B$ の要素の総和を求めよ.答えは互いに素な自然数 $a, b$ により $\displaystyle\frac ab$ と表されるので,$1$ 行目に $a$,$2$ 行目に $b$ を答えよ.

Conkom1910615 ジャッジなし 難易度:
3月前

2

問題文

ある数は2の倍数であり、1を引くと3の倍数である。この数を、小さい順で10個答えよ

解答形式

数字を10個

指数・対数といろいろ

hi-yo 自動ジャッジ 難易度:
4月前

2

$$
\sqrt{log_\frac{1}{2}(\frac{1}{256})}の小数部分?
$$

第3問

tsukemono 採点者ジャッジ 難易度:
18日前

7

第3問

$t$が実数全体を動くとする。
このとき、点$$(\frac{1}{1+t^2},\frac{t}{1+t^2})$$はどのような図形を描くか答えよ。

解答する際の注意

答えの図形が正確に分かるようにお答えください。

第4問

tsukemono 採点者ジャッジ 難易度:
18日前

3

第4問

$θ$を媒介変数とし、次のように表される曲線$C$を考える。$$\begin{cases}x=θ-sinθ\\y=1-cosθ\end{cases}$$
$0≦θ≦2π$として、この曲線$C$の長さ$L$を求めよ。

整数問題

sulippa 採点者ジャッジ 難易度:
6月前

6

問題文

素数 $p$ と正の整数 $n$ が、以下の等式を満たすとします。
$$\frac{n^2+np+p^2}{n+p} = 2p-1$$
このような組 $(n,p)$ を全て求めてください。

解答形式

解が有限個であるとされた場合は、全ての解と、それ以外に解が存在しないことの証明を、簡単で構わないのでお願いします。無限個とされた場合は証明いらないので、何らかの形で解を表してください。証明に完全性がないと見なした場合は、採点機能がない都合上、99点をあげたいところも不正解とさせていただきます

第6問

tsukemono 採点者ジャッジ 難易度:
18日前

3

第6問

次の問に答えよ。
$(1)$ $cos3θ=4cos^3θ-3cosθ$を示せ。
$(2)$ $cos4θ$を$cosθ$の整式で表せ。
$(3)$ $cos\frac{2}{7}π$が無理数であることを示せ。

第7問

tsukemono 採点者ジャッジ 難易度:
18日前

3

第7問

次の定積分を求めよ。$$\int_{0}^{\frac{π}{2}}{\frac{dx}{1+tanx}}\quad$$

第1問

tsukemono 採点者ジャッジ 難易度:
18日前

5

第1問

次の空欄$(ア)~(オ)$に当てはまる数字をそれぞれ答えよ。
数列{$a_{n}$}を次のように定める。
$$a_1=a_2=1,a_{n+2}-a_{n+1}+a_n=0 (nは自然数)$$この数列の一般項は

$a_n=\frac{(ア)}{\sqrt{(イ)}}$$sin\frac{nπ}{(ウ)}$
である。
また、$a_{2025}=(エ)$であり、$$\sum_{n=1}^{2025}{a_n}=(オ)\quad$$である。

第2問

tsukemono 採点者ジャッジ 難易度:
18日前

5

第2問

次の空欄$(ア)~(エ)$に当てはまる数字をそれぞれ答えよ。
関数$f(x)$を$$f(x)=\frac{log(x)}{x}$$と定める。
$f(x)$は、$x=(ア)$で、極大値$\frac{(イ)}{e}$をとる。
また、$$\int_1^e{f(x)dx}\quad$$
の値は$\frac{(ウ)}{(エ)}$である。

ただし、対数は自然対数を表し、$e$は自然対数の底とする。

第5問

tsukemono 採点者ジャッジ 難易度:
18日前

6

第5問

実数$x,y$が不等式$x^2+y^2=1$をみたすとき、$x+y$の最大値を求めよ。