D

nmoon 自動ジャッジ 難易度: 数学 > 競技数学
2025年10月3日12:30 正解数: 15 / 解答数: 37 (正答率: 40.5%) ギブアップ不可
この問題はコンテスト「Nyannyan Math Contest 003 (NMC003)」の問題です。

全 37 件

回答日時 問題 解答者 結果
2025年10月4日15:21 D ゲスト
正解
2025年10月4日10:51 D Calculator
不正解
2025年10月4日10:51 D Calculator
不正解
2025年10月4日10:26 D korosaikoro
不正解
2025年10月4日6:56 D rakki
不正解
2025年10月4日6:50 D rakki
不正解
2025年10月4日0:16 D unknown
正解
2025年10月3日22:48 D cocoa_math
不正解
2025年10月3日22:24 D natsuneko
正解
2025年10月3日22:19 D cocoa_math
不正解
2025年10月3日21:43 D Nyarutann
不正解
2025年10月3日21:37 D Nyarutann
不正解
2025年10月3日21:36 D Nyarutann
不正解
2025年10月3日21:20 D Nyarutann
不正解
2025年10月3日20:35 D SuamaX
正解
2025年10月3日19:14 D MARTH
正解
2025年10月3日18:42 D Weskdohn
正解
2025年10月3日18:17 D ZIRU
正解
2025年10月3日18:13 D ZIRU
不正解
2025年10月3日17:46 D epsug
正解
2025年10月3日17:29 D miq_39
正解
2025年10月3日17:18 D arararororo
正解
2025年10月3日17:16 D arararororo
不正解
2025年10月3日16:40 D miq_39
不正解
2025年10月3日15:44 D tomorunn
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

C

nmoon 自動ジャッジ 難易度:
4日前

40

問題文

nmoon君は黒板に $60$ の正の約数を一つずつ全て書き込みます.そして,以下の操作をできなくなるまで行います.

  • 黒板に書かれた $2$ つの正の整数 $x,y$ について,黒板から $x,y$ を消し,$x,y$ の最大公約数と最小公倍数を黒板に書き込む.但し,このとき,操作前と操作後での黒板に書かれた数が,重複を許して全て一致することはないようにする.

全ての操作が終了したとき,黒板に書かれた数の総和としてあり得る値の総和を求めてください.

解答形式

正整数で答えてください.

A

nmoon 自動ジャッジ 難易度:
4日前

39

問題文

正三角形 $ABC$ の内部に点 $P$ をとったところ,以下が成立しました.

$$AP = 10 , BP = 14 , CP = 16$$

このとき,正三角形 $ABC$ の面積を求めて下さい.

解答形式

求める値を $2$ 乗した値は正整数となるので,その値を求めて下さい.

B

nmoon 自動ジャッジ 難易度:
4日前

50

問題文

以下の式を満たす正の整数の組 $(m,n)$ 全てについて,$m + n$ の総和を求めてください.

$$(mn - 1)^2 + (m + n)^2 = 650$$

解答形式

正整数で答えてください.

E

nmoon 自動ジャッジ 難易度:
4日前

20

問題文

横一列に並んだ $14$ 個のオセロの石があります.そして,以下の操作を何度か行い,黒面を向いた石の個数をできるだけ少なくします.

  • 連続して並んだ $4$ 個の石を選んで,左から $1,2,4$ 個目の石を全て裏返す.

全ての操作の終了後に黒面を向く石の個数を スコア とします.最初の石の配色は $2^{14}$ 通りありますが,これら全ての場合においてスコアの総和を求めてください.
 但し,オセロの石は,片方が黒面で,もう片方が白面であるとする.

解答形式

正整数で答えてください.

PDC009 (D)

pomodor_ap 自動ジャッジ 難易度:
6日前

21

問題文

$$x^4-xy^3+y^2=11, x^3y-y^4+x^2=13$$ を満たす複素数の組 $(x,y)$ について,$\dfrac{y}{x}$ としてありうる値の総和は互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ を解答せよ.

PDC009 (C)

pomodor_ap 自動ジャッジ 難易度:
6日前

28

問題文

正の整数 $n$ について,$f(n)$ で $n$ の正の約数であり,$n$ の最小の素因数を素因数に持たないようなもののうち最大のものを表す.例えば,$f(2\times 3^2)=3^2, f(2\times 3\times 5)=3\times 5$ である.ただし,$f(1)=1$ と扱う.
また,$g(n)$ で $n$ の正の約数 $d$ すべてについて $f(d)$ の総和を表す.
このとき,
$$g(2\times 3\times 7\times 11\times 13\times 17)-g(5\times 7\times 11\times 13\times 17)$$ を求めよ.

PDC009 (E)

pomodor_ap 自動ジャッジ 難易度:
6日前

26

問題文

$14\times 14$ のマス目に以下のように整数を書き込む.ただし,左から $m$, 上から $n$ 番目のマスを $(m,n)$ で表すものとする.

  • $(1,1)$ に $1$ を,$(1,2)$ と $(2,1)$ に $2$ を書き込む.
  • $k\geq 3$ について,すべてのマスに整数が書き込まれるまで以下を繰り返す: $k-2$ が書き込まれているいずれかのマスと,辺を共有せず頂点のみを共有しているマスであり,まだ整数が書き込まれていないようなものすべてに $k$ を書き込む.

いま,PDC 君は $(m,n)$ にいるとき $(m+1,n), (m,n+1)$ に瞬間移動することができ,またそれ以外の移動をすることができない.あるマスからあるマスへの経路について,全ての訪問したマス(出発地点と到着地点を含む)に書き込まれた数字の総和をスコアとする.
$(1,1)$ から $(14,14)$ まで移動するとき,スコアが最小となるような移動方法はいくつあるか?

F

nmoon 自動ジャッジ 難易度:
4日前

7

問題文

$AB \lt AC$ を満たす鋭角三角形 $ABC$ の垂心を $H$,とする.直線 $BH, CH$ と三角形 $ABC$ の外接円との交点をそれぞれ $E (\not = B) , F (\not = C)$ とし,辺 $AB , AC$ と 線分 $EF$ との交点をそれぞれ $P , Q$ とする.直線 $AC$ に関して $P$ と対称な点を $R$,直線 $AB$ に関して $Q$ と対称な点を $S$ とし,三角形 $RSH$ の外心を $O$ とすると,以下が成立した.

$$ AH = 3 , BC = 4 , AO = 1$$

このとき,$AB$ の長さを求めてください.

解答形式

互いに素な正整数 $b , c$ および正整数 $a$ を用いて $\dfrac{\sqrt{a} - b}{c}$ と表されるので,$a + b + c$ を答えてください.

ABC(G)

atawaru 自動ジャッジ 難易度:
8日前

35

問題文

$1000$ の正の約数の集合を $D$ とします.また,$999$ 次方程式

$$x^{999}+x^{998}+\dots+x+1=0$$

の $999$ 個の解を $x=x_1,x_2,\dots,x_{999}$ とします.このとき,

$$\sum_{d\in D}^{}\sum_{s=1}^{999} x_s^d$$

の値を求めてください.

解答形式

答えは非負整数値となるので,それを半角で解答してください.

dodecahedron

Lim_Rim_ 自動ジャッジ 難易度:
6月前

25

問題文

正 $12$ 面体の $20$ 個の頂点に,$20$ 個の数字
$$
1\cdot 1!, \quad 2\cdot 2!, \dots \quad 20\cdot 20!
$$
を配置します.この正 $12$ 面体の各面の正五角形に対し,その頂点に置かれた $5$ つの数字の総和を書き込みます.面に書き込まれた $12$ 個の数字の総和は配置の仕方によらず一意に定まるので,$S$ を $2024$ で割った余りを解答してください.

PDC009 (B)

pomodor_ap 自動ジャッジ 難易度:
6日前

74

問題文

$p^2q+16r=2s^2$ を満たす素数の組 $(p,q,r,s)$ すべてについて,$pqrs$ の総和を解答せよ.

PDC009 (F)

pomodor_ap 自動ジャッジ 難易度:
6日前

16

問題文

三角形 $ABC$ について,線分 $BC,CA$ の中点を $M,N$ とし,三角形 $AMN$ の外接円と三角形 $ABC$ の外接円,半直線 $AB$ がそれぞれ $A$ でない点で交わったのでそれぞれを $D, E$ とする.$MD=5, AB=34, BE=7$ が成り立つとき,線分 $BC$ の長さの二乗を解答せよ.