$x,y$を非負整数とする。 $10x+31y=1031$ を満たす組$(x,y)$をすべて求めよ。
誤って第1問と第3問の答えを逆で設定していました。大変申し訳ございません。
組$(x,y)$について、$x+y$の総和を半角数字で入力してください。
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
カボチャ$10$個とキャンディ$31$個を円周上に並べる方法は何通りあるか。 ただし、カボチャとキャンディはどちらも区別できない。
半角数字で入力してください。
正$10$角形が半径$31$の円に内接している。 正$10$角形の面積を求めよ。
正$10$角形の面積は互いに素な正整数$a,b$及び正整数$c$と平方因子をもたない正整数$d$を用いて$\dfrac{b\sqrt{c-2\sqrt{d}}}{a}$と表されるので、$a+b+c+d$の値を半角数字で入力してください。
数列${a_n}$が$$a_1=\frac{10}{31},a_{n+1}=\frac{(n+1)^n}{n^n}a_n$$を満たしている。 $a_{1031}$の値を求めよ。
$a_{1031}$の値は互いに素な整数$p,q$を用いて$\dfrac{p}{q}$と表されるので、$pq$が$2025$で割り切れる回数を半角数字で入力してください。
$0$以上$9$以下の整数を順番を区別して$1031$個選び、それらを$a_1,a_2,a_3,…,a_{1030},a_{1031}$とする。(重複も許す) $a_1+a_2+a_3+…+a_{1030}+a_{1031}$が$9$で割り切れない奇数となるような組$(a_1,a_2,a_3,…,a_{1030},a_{1031})$の個数を求めよ。
条件を満たす組$(a_1,a_2,a_3,…,a_{1030},a_{1031})$の個数を$N$個とします。$N$の各桁の和を半角数字で入力してください。
$f^{1031}(x)=f(x)$を満たし、かつ$f(1031)=1031$である多項式関数$f(x)$をすべて求めよ。 ただし、$f^{1031}(x)=\underbrace{f(f(\cdots f}_{1031個}(x)\cdots))$とします。
簡単な証明もお願いします。
正の実数 $x,y,z$ が $x+y+z=xyz$ を満たしているとき,
$$\dfrac{x}{1+x^2}+ \dfrac{y}{1+y^2}+ \dfrac{z}{1+z^2}$$
の最大値を求めてください.
求める値は互いに素な正整数 $a,c$ および平方因子を持たない正整数 $b$ を用いて, $\dfrac{a \sqrt{b}}{c}$ と表せるから, $a+b+c$ を解答してください.
$x^{100}+2x^{80}+4x^{60}+4x^{40}+2x^{20}+1=0$ の複素数解を $a_1, a_2, …, a_{100}$ とするとき,$$\sum_{k=1}^{100} \dfrac{a_k^3+2a_k^2+3a_k+4}{a_k^3+a_k^2+a_k+1}$$ の値を求めてください.
関数$A(n),B(n)$を $$ A(n)=(1\le x \le nを満たす1001と互いに素な整数xの個数)\\ B(n)=(n\le x \le 1001を満たす1001と互いに素な整数xの個数) $$ と定めるとき,次の値を求めてください. $$ \sum_{n=1}^{1000}\quad \frac{A(n)^2}{A(n)-B(n)} $$
$f(x)=\frac{3-x}{ \sqrt{3(x+2)(-2x+1)}}$ $ (-2<x<0)$ とする $f(x)$ が最小値を取るときの $x$ の値を求めよ
解答は$-\frac{㋐}{㋑}$の形で表されるので、1行目に㋐を、2行目に㋑を半角数字で入力してください
整数 $x,y$ と数列 $z_k=|x-k|+|y-k|$ に対し,次の命題は $xy\leqq 7!$ の反例を何組もつか.
半角数字で入力してください.
円Oが存在して、円O上に点A,B,C,Dをこの順に配置する。角ABD、角DCAそれぞれの二等分線の交点をE、角BAC、角CDBそれぞれの二等分線の交点をF、BDとACの交点をG、△ABG、△DCGそれぞれの内心をI,I’とする。 $$AB=\frac{19}{2},EF=11,△ABI=\frac{19}{2} $$ の時、四角形EIFI’の面積を求めよ。
求める値は互いに素な正整数a,bでa/bと表せるので、a+bを解答してください。
線分$AB$を$1:k(k>0)$に内分する点$P$と,線分$AB$の中点$M$がある。 $PB=3,PM=\frac{3}{4}$のとき,$k$の値として相応しいものを以下の選択肢からふたつ選べ。
1.$\frac{1}{3} $ 2.$\frac{2}{3} $ 3.$2$ 4.$3$
ふたつ目は改行して答えてください。 例) 1 2