$x,y$を非負整数とする。 $10x+31y=1031$ を満たす組$(x,y)$をすべて求めよ。
誤って第1問と第3問の答えを逆で設定していました。大変申し訳ございません。
組$(x,y)$について、$x+y$の総和を半角数字で入力してください。
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
正$10$角形が半径$31$の円に内接している。 正$10$角形の面積を求めよ。
正$10$角形の面積は互いに素な正整数$a,b$及び正整数$c$と平方因子をもたない正整数$d$を用いて$\dfrac{b\sqrt{c-2\sqrt{d}}}{a}$と表されるので、$a+b+c+d$の値を半角数字で入力してください。
数列${a_n}$が$$a_1=\frac{10}{31},a_{n+1}=\frac{(n+1)^n}{n^n}a_n$$を満たしている。 $a_{1031}$の値を求めよ。
$a_{1031}$の値は互いに素な整数$p,q$を用いて$\dfrac{p}{q}$と表されるので、$pq$が$2025$で割り切れる回数を半角数字で入力してください。
カボチャ$10$個とキャンディ$31$個を円周上に並べる方法は何通りあるか。 ただし、カボチャとキャンディはどちらも区別できない。
半角数字で入力してください。
$0$以上$9$以下の整数を順番を区別して$1031$個選び、それらを$a_1,a_2,a_3,…,a_{1030},a_{1031}$とする。(重複も許す) $a_1+a_2+a_3+…+a_{1030}+a_{1031}$が$9$で割り切れない奇数となるような組$(a_1,a_2,a_3,…,a_{1030},a_{1031})$の個数を求めよ。
条件を満たす組$(a_1,a_2,a_3,…,a_{1030},a_{1031})$の個数を$N$個とします。$N$の各桁の和を半角数字で入力してください。
正の実数 $x,y,z$ が $x+y+z=xyz$ を満たしているとき,
$$\dfrac{x}{1+x^2}+ \dfrac{y}{1+y^2}+ \dfrac{z}{1+z^2}$$
の最大値を求めてください.
求める値は互いに素な正整数 $a,c$ および平方因子を持たない正整数 $b$ を用いて, $\dfrac{a \sqrt{b}}{c}$ と表せるから, $a+b+c$ を解答してください.
$f^{1031}(x)=f(x)$を満たし、かつ$f(1031)=1031$である多項式関数$f(x)$をすべて求めよ。 ただし、$f^{1031}(x)=\underbrace{f(f(\cdots f}_{1031個}(x)\cdots))$とします。
簡単な証明もお願いします。
$0<m<n$ とする。以下の等式を満たす自然数 $m,n$ を全て求めよ。 $$\frac{(m+n-1)^4-(m+n-2)^4+m-n+1}{4(m+n-1)+m-n}=2026$$
$m,n$ の値をカンマ(,)で区切り、答えが複数ある場合は行を分けて答えてください。
例 1,2 12,34
x,y,zを自然数とする。 xy+xz = x+y+z となるような(x,y,z)の組はいくつあるか。
数字のみを記入すること。例:3組ある場合は 3
以下の $x$ に関する $100$ 次方程式の(重解を含む)$100$ 個の複素数解を $\alpha_1,\alpha_2,...,\alpha_{100}$ とします. $$x^{100}+x^{99}+2025x+12=0$$
このとき,以下の値を求めてください. $$\sum_{k=1}^{100} ({\alpha_k}^{100}+{\alpha_k}^{99})$$
整数で解答してください.
https://x.com/atwr0711/status/2000173940698927172?s=20 こちらの14番の問題と同じです.
正整数$N$を$7,10,13,16,19$で割った余りがそれぞれ$2,3,4,5,6$であるとします。このとき$N$を$1729$で割った余りを求めてください。
以下の $x$ に関する $3$ 次方程式は相異なる $3$ 個の複素数解をもつので,それぞれの解を $\alpha,\beta,\gamma$ とします. $$x^3-2^{2025}x^2+24x-2^{2023}=0$$
このとき,以下の値は整数になるので,その正の約数の個数を求めてください. $$(\alpha+\beta)(\beta+\gamma)(\gamma+\alpha)$$
https://x.com/atwr0711/status/2000173940698927172?s=20 こちらの31番の問題と同じです.
ある神社ではおみくじを販売していて、おみくじの内容について次のようなことが分かっています。
・くじは2026本あり、それぞれに運勢が1つ書いてある。 ・運勢は7種類あり、大吉、中吉、小吉、凶、大凶、吉、平である。 ・(大吉の本数):(中吉の本数)=5:7 ・(中吉の本数):(小吉の本数)=9:11 ・(小吉の本数):(凶の本数)=7:4 ・(凶の本数):(大凶の本数)=11:8 ・(吉の本数):(平の本数)=5:2
平の本数を求めてください。
答えの数字を半角数字で入力してください。
ここ3年ぐらい吉しか引いてないです。 (追記)今年も吉だったので4年連続です。