全 22 件
感想を投稿してみましょう!この感想は正解した人だけにしか見えません!
この問題を解いた人はこんな問題も解いています
平方因子を持たない正整数 $n$ であって,$\dfrac{\phi(n)}{\gcd(n,\phi(n))} = 18$ を満たすものの総和を解答してください.
$S=\lbrace 0,1, \ldots , 30 \rbrace$ とします.関数 $f:S \rightarrow S$ であって,以下を満たすようなものの個数を $N$ とします.
$N = a \cdot b^c$ であるような正整数 $a,b,c$ について,$a+b+c$ の最小値を解答してください.
上から $i$ 段目 $(1 \leq i \leq 2026)$ に $i$ 個の正整数を並べて三角形を作る方法であって,どの段も総和が $2026$ となるようなものの個数を素数 $2029$ で割ったあまりを解答してください.
$60$ 以下の正整数 $n$ に対して,それを $2,3,4,5$ で割ったあまりをそれぞれ $a,b,c,d$ とします.$xy$ 平面上に $P(a,b)$ と $Q(c,d)$ をとったとき $PQ= 1$ となるような $n$ の個数を解答してください.
$\dfrac{51-n}{n-1}$ が平方数となるような整数 $n$ の総和を解答してください.
(13:17追記 $0$ も平方数に含むとします)
$56076923$ の素因数の総和を求めてください. ただし, 重複する素因数は異なるものとして考えます.
例)非負整数を答えてください.
正整数 $n$ に対して $n^{10n}$ を $31$ で割ったあまりを $f(n)$ としたとき, $$\sum_{k=1}^{12000} f(k)$$ の値を求めてください.
半角英数字で回答してください.
正整数 $a$ に対して,$\dfrac{n(n+2)}{a}$ が平方数であるような正整数 $n$ が無限に存在しました.さらに小さい方から $i$ 番目のものを $n_i$ とすると,任意の正整数 $i$ が $n_{i+2}+n_{i}=98n_{i+1}+2n_1$ を満たしました.このとき,$a$ としてありうるものの総和を解答してください.
任意の正整数 $m$ に対して $n^m-n$ が $10!$ の倍数であるような $10!$ 以下の正整数 $n$ の個数を求めよ.
半角数字で入力してください。
2種類のお菓子A、Bがそれぞれ24個ずつある、これをX, Y, Zの3人で余りなく分けることにした。ここで、ある人が1個ももらわないお菓子の種類があってもよい、X、Y、Zの3人のうちに、以下の条件をみたす2人が存在しないような分け方は何通りありますか。
条件:2人のうち1人はAをa個、Bをa'個もらい、もう1人はAをb個、Bをb'個もらうとき、a≤a'かつb≤b'かつa+b<a'+b'が成り立っている。
次のルールで整数を10個1列に並べて書く ・左端は21である ・隣り合う2数について、右の数は左の数の2倍の数か、左の数から3を引いたものである あり得る整数の列はいくつありますか
正整数に対して定義され非負整数値をとる関数 $f$ が以下を満たしています.
任意の正整数 $x,y$ について $f(xy)=f(x) \oplus f(y)$
$x$ と $y$ が互いに素ならば $f(xy)=f(x)+f(y)$
このような関数 $f$ について,以下を満たす正整数の組 $(x,y)$ の個数を $c(f)$ とします.$c(f)$ がとりうる値は有限個なので,その総和を解答してください.
$x,y$ はともに $30^{10}$ の約数である.
$f(xy)=f(x)+f(y)$
追記: $\oplus$ はビットごとの排他的論理和です