次のルールで整数を10個1列に並べて書く ・左端は21である ・隣り合う2数について、右の数は左の数の2倍の数か、左の数から3を引いたものである あり得る整数の列はいくつありますか
Discordでログイン パスワードでログイン
この問題はコンテストの問題です。解答するにはログインが必要です。
この問題を解いた人はこんな問題も解いています
平面上の (0,0)から (7,7) まで,次の 2 つの条件をともに満たしながら格子点上を移動する方法は何通りありますか
・格子点 (x,y) にいるとき,次に移動できる格子点は (x+1,y),(x,y+1) のいずれかである ・移動の途中で (0,0) でない格子点 (t,t) を通過した場合,格子点 (2t,2t) を通過することはできない (1≦t≦3,tは整数)
2種類のお菓子A、Bがそれぞれ24個ずつある、これをX, Y, Zの3人で余りなく分けることにした。ここで、ある人が1個ももらわないお菓子の種類があってもよい、X、Y、Zの3人のうちに、以下の条件をみたす2人が存在しないような分け方は何通りありますか。
条件:2人のうち1人はAをa個、Bをa'個もらい、もう1人はAをb個、Bをb'個もらうとき、a≤a'かつb≤b'かつa+b<a'+b'が成り立っている。
$6106$以下の正整数$N$について,以下のようにスコアを定める. スコア:整数$a,b(a≦b)$の組で,$ab=N$を満たすようなものの個数. スコア$=2$となるような$N$は何通りありますか. 但し,以下に示す10000以下の素数表を用いてもいい. http://allthingsuniverse.com/jp/prime/10000.html
半角数字で入力してください.
今年でSKG学院の学園祭は第$66$回を迎えます.また今年度は $2025$ 年です.
さて、$0,2,5$ のみを用いた数式の内,答えが $66$ となるようなものを一つ求めてください.
但し,演算子($+, -, \times$ など)は自由に用いて良いものとします.
一例:
$\left( (2 \times 0 \times 2 \times 5)! + (2 \times 0 \times 2 \times 5)! \right) \times \left( 2^2 + 0^2 + 2^2 + 5^2 \right) = (1+1) \times 33 = 66$
式と答えを省略無しで入力して下さい.また,上の例とは違うものをお願いします.
どの4頂点を選んでもそれが閉路にならない、800頂点の単純平面グラフの辺の数の最大値を求めよ。
以下の値を求めてください. $$\sum_{k=0}^{2026} \frac{k^2}{k^2-2026k+1013×2026}$$
整数で解答してください
$S=$$\{$$\sqrt{1},\sqrt{2},\dots,\sqrt{n} $$\}$の部分集合であって、次を満たすものの個数をmとする。 ・要素が3つ ・どの2つを選んでも、2つの比の値が有理数となる
n=mとなるnを全て求め、その総和を求めなさい。
n以下の全ての自然数の集合Sの部分集合Tは次を満たした。 ・Tの任意の要素x,yについて、xyはTに含まれない。 nに対するTの要素数の最大値をf(n)とする。 このとき、ある人は命題Qnを唱えた。 「Tの要素数がf(n)となるTは1つしかない」 Qnが偽となる2025以下のnの総和を求めよ。
SKG学院の文化祭では,1から10の目が一つずつ書かれた十面体の歪んだダイスを配布しています.このダイス十個に$1$から$10$までの番号をつけることにしました. ここで以下のような事実が分かっています. また$1≦n≦10$を満たす任意の整数$n$について,番号$s$がついたダイスを一回振って$n$の目が出る確率を$a_{n^s}$と書くことにします.
・$a_{1^s}:a_{2^s}…a_{9^s}:a_{10^s}=1^s:2^s\cdots9^s:10^s$を満たす.
この十個のダイスを同時に一回振る時,出目の積の期待値を求めて下さい.
半角数字で入力して下さい.
聖くんと光くんはトランプゲームを行うことにした.
なお,$1$ から $13$ までの数字が書かれたトランプをそれぞれ四枚ずつ用いる.
ルールは以下の通り. - 聖くんはトランプを $1$ 枚から$3$ 枚まで引くことができる. - 光くんは幾つかの質問をして,聖くんが引いたトランプに書かれた数字を回答する.
光くん「書かれた数字の和を教えて」 聖くん「$31$ だよ」 光くん「うーん難しいな……なにかヒントくれない?」 聖くん「トランプに書かれた数字の積を求めたら、各位の和は $2$ になったよ」
光くんが引いたトランプの目として考えられるものを全て求めなさい。
答えが1,2,4の場合は(1,2,4)と入力して下さい.(小さい順に)
0,1,2,……,8 の数字から一つずつ選んでa,b,c,d,e,f,gに代入するという操作を考える。 数字の重複を許さないとき、十進表記された7桁の数abcdefgが3の倍数となる確率を求めよ。 ただし、a=0の場合も認めます。
互いに素な正整数q,pを用いて p/q と表せるため、p+qを解答してください。
純循環小数(少数第一位から循環する循環小数)$x$を定義域とする関数$f(x)$を、$x$の循環部とする。ただし、循環部に0が現れ、それより大きい位に0以外の数がない場合、その0は無視するものとする。$f(\frac{5}{33})=15,f(\frac{4}{3333})=12$といった具合である。 正整数$n$に対して、$n<m<2025^{2025}$なる正整数$m$であって、$n$の値にかかわらず以下の等式を満たすものはいくつあるか。 $$f(\frac{n}{m})=(m−2)n$$ 必要ならば、$$0.30102<\log_{10}2<0.30103, 0.47712<\log_{10}3<0.47713$$ を用いてよい。