次のルールで整数を10個1列に並べて書く ・左端は21である ・隣り合う2数について、右の数は左の数の2倍の数か、左の数から3を引いたものである あり得る整数の列はいくつありますか
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
平面上の (0,0)から (7,7) まで,次の 2 つの条件をともに満たしながら格子点上を移動する方法は何通りありますか
・格子点 (x,y) にいるとき,次に移動できる格子点は (x+1,y),(x,y+1) のいずれかである ・移動の途中で (0,0) でない格子点 (t,t) を通過した場合,格子点 (2t,2t) を通過することはできない (1≦t≦3,tは整数)
$S=$$\{$$\sqrt{1},\sqrt{2},\dots,\sqrt{n} $$\}$の部分集合であって、次を満たすものの個数をmとする。 ・要素が3つ ・どの2つを選んでも、2つの比の値が有理数となる
n=mとなるnを全て求め、その総和を求めなさい。
2種類のお菓子A、Bがそれぞれ24個ずつある、これをX, Y, Zの3人で余りなく分けることにした。ここで、ある人が1個ももらわないお菓子の種類があってもよい、X、Y、Zの3人のうちに、以下の条件をみたす2人が存在しないような分け方は何通りありますか。
条件:2人のうち1人はAをa個、Bをa'個もらい、もう1人はAをb個、Bをb'個もらうとき、a≤a'かつb≤b'かつa+b<a'+b'が成り立っている。
$60$ 以下の正整数 $n$ に対して,それを $2,3,4,5$ で割ったあまりをそれぞれ $a,b,c,d$ とします.$xy$ 平面上に $P(a,b)$ と $Q(c,d)$ をとったとき $PQ= 1$ となるような $n$ の個数を解答してください.
$\dfrac{51-n}{n-1}$ が平方数となるような整数 $n$ の総和を解答してください.
(13:17追記 $0$ も平方数に含むとします)
上から $i$ 段目 $(1 \leq i \leq 2026)$ に $i$ 個の正整数を並べて三角形を作る方法であって,どの段も総和が $2026$ となるようなものの個数を素数 $2029$ で割ったあまりを解答してください.
以下の操作を数字が$100$以下になるまで繰り返し行います. ・下$2$桁の数字を取り除き、残った数字にかける. たとえば,$2108$は,$21×8=168$となります. このとき、$2$回目の操作までに数字が$100$になる数を今年の数と呼ぶことにします. 今年の数のうち、2026は何番目に小さいですか? ただし、100は今年の数に含まれないものとします.
ボール100個をランダムに20人に分ける。10人が1組の生徒で、10人が2組の生徒である。ボールが全く貰えない人がいてもよい。全てのボールは区別できず、分け方は$ _{119}C_{19}$通りあるが、それぞれの分け方は同様に確からしい。 1組の生徒のうち、それぞれの持つボール数の総積をポイントとする。ポイントの期待値は互いに素なA,Bで$\frac{A}{B}$と表せるので、A+Bを解答せよ。
以下の値を求めてください. $$\sum_{k=0}^{2026} \frac{k^2}{k^2-2026k+1013×2026}$$
整数で解答してください
$$\frac{2^{22}-22^2-4-44^4}{2 \times 22+4 \times 44}= \space ?$$$?$ に入る自然数を答えよ。
三角形 $ABC$ について,重心を $G$ ,線分 $AB$ の中点を $M$ ,線分 $AC$ の中点を $N$ とし,直線 $AG,MN$ の交点を $P$ としたとき,四角形 $BGPM$ の面積が $2025$ となりました.三角形 $ABC$ の面積を求めてください.
答えは非負整数値となるので,それを半角で解答してください.
全ての桁が偶数からなる正整数を今年の数とします.例えば $2026$ は今年の数です. $2026$ 以下の今年の数は全部でいくつありますか.