メンテナンス終了のお知らせ (2021年7月31日10:54)
システムの不具合により、アクセスできない状態となっておりましたが、システムを復旧し、ご利用いただけるようになりました。 ご不便をおかけし、大変申し訳ございませんでした。

Commutability

halphy ジャッジなし 難易度: 数学 > 大学数学
2020年6月4日0:54 解答数: 0 ギブアップ不可
線形代数

問題文

${\rm GL}(2,\mathbb{R})$ を $2\times 2$ 正則行列全体の集合とする.単位行列を $E$ とし,${\rm GL}(2,\mathbb{R})$ の部分集合 $S$ を

\begin{equation}
S=\{ A\in {\rm GL}(2,\mathbb{R})\mid \forall X\in {\rm GL}(2,\mathbb{R}), AX=XA\}
\end{equation}

で定めるとき

\begin{equation}
S=\{ rE \mid r\in \mathbb{R}, r\neq 0\}
\end{equation}

であることを証明せよ.


スポンサーリンク

解答提出

この問題はジャッジなしの問題です。 提出された答案に対して採点は行われません。

Sign in with Google Discordでログイン パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または