方針は画像の通り。赤い線分の長さは$5\sqrt2$である。 $z^2=x(x+y)$の部分は三平方の定理などを利用しても導ける。
この問題を解いた人はこんな問題も解いています
半円と直角三角形を組み合わせた以下の図について、青で示した線分と赤で示した線分の長さの比を求めてください。
$\left(\dfrac{x}{y}\right)^2$ の値を半角数字で解答してください。
扇形の内部に図のように線を引きました。赤い線分の長さが$2\sqrt 5$のとき、青い線分の長さを求めてください。
半角数字で解答してください。
長方形に内接する半円があります。青い三角形の面積が9のとき、赤い線分の長さを求めてください。
半円と、その中心を通る円が図のように配置されています。赤、青で示した弧の長さがそれぞれ3, 4のとき、緑で示した弧の長さを求めてください。
2つの合同な長方形を図のように配置しました。赤い三角形の面積が10のとき、青い凹四角形の面積を求めてください。
図の条件の下で、水色で示した三角形の面積を求めてください。
求める面積 $x$ は互いに素な正整数 $a,b$ を用いて $x=\dfrac{a}{b}$ と表せるので、$a+b$ を解答してください。
図のように線分の長さが与えられたとき、青で示した線分の長さを求めてください。
青い線分の長さを$x$とすると$x^2$は整数となるので、$x^2$を半角数字で解答してください。
図のように長方形や直角三角形の内接円が配置されています。青で示した角の角度を求めてください。
度数法で求め、半角数字で0以上360未満の整数を解答してください。 ※度や°などの単位は付けないでください。
2つの正方形が図のように配置されています。赤と青の面積の差が$11$のとき、紫と橙の面積の差を求めてください。
半円の内部に正方形を2つ、図のように配置しました。赤い線分の長さ(=2つの正方形の一辺の差)が3であるとき、青で示した部分の面積と緑で示された部分の面積の差を求めてください。
図の条件の下で、青で示した角の大きさを求めてください。
$x=a$ 度 です。$a$ に当てはまる、0以上180未満の値を半角数字で解答してください。
共通部分を持たない2円と、その共通接線があります。図中の同じ色で示した線分の長さが等しいとき、2円の半径比を求めてください。 ※図は正確でないことに注意
大円の半径を$R_1$、小円の半径を$R_2$とすると、$R_1:R_2=\fbox ア:\fbox イ$です。文字列 アイ を解答してください。 例:$R_1:R_2=5:2$ であれば 52 と解答