この問題を解いた人はこんな問題も解いています
図のように配置された図形で、半円の半径が$5$、赤、青、緑の線分の長さがそれぞれ$3,X,Y$のとき、$X^2+Y^2$の値を求めてください。
半角数字で解答してください。
正方形と正三角形を組み合わせた図のような図形について, 青で示した角の大きさを求めてください.
0以上180未満の整数を半角数字で解答してください。 ただし度数法で、単位を付けずに解答してください。
図の条件の下で、青で示した角の大きさを求めてください。
解答を度数法で表し、0以上180未満の数値を半角数字で解答してください。 単位("度・°"など)はつけないでください。
図の条件の下で、緑で示した三角形の面積を求めてください。
図の条件において、$x$ の長さを求めてください。 なお、図中オレンジの点は直角三角形の内心です。
解答は $x=\sqrt a$ となります。$a$ を半角数字で解答してください。
2つの正方形が図のように配置されています。赤い線分の長さが4のとき、2つの正方形の面積の合計を求めてください。
半円が内接する長方形に、図のように線を引きました。赤と青で示した線分の長さがそれぞれ3,4で、ピンクで示した線分の長さが等しいとき、緑の線分の長さを求めてください。
$x=\sqrt{\fbox{アイ}}$です。文字列 アイ を解答してください。
正方形と正三角形を組み合わせた以下の図において、青で示した角の大きさを求めてください。
半角数字で解答してください。 解答は度数法で、単位を付けずに0以上180未満の整数として解答してください。
2つの正方形が図のように配置されています。赤と青の面積の差が$11$のとき、紫と橙の面積の差を求めてください。
半円の内部に正方形を2つ、図のように配置しました。赤い線分の長さ(=2つの正方形の一辺の差)が3であるとき、青で示した部分の面積と緑で示された部分の面積の差を求めてください。
共通部分を持たない2円と、その共通接線があります。図中の同じ色で示した線分の長さが等しいとき、2円の半径比を求めてください。 ※図は正確でないことに注意
大円の半径を$R_1$、小円の半径を$R_2$とすると、$R_1:R_2=\fbox ア:\fbox イ$です。文字列 アイ を解答してください。 例:$R_1:R_2=5:2$ であれば 52 と解答
円の中の線分が図の条件を満たすとき、円の半径を求めてください。
半径$r$は、$r=\dfrac{\sqrt{\fbox{アイ}}}{\fbox ウ}$と表されます。 文字列 アイウ を解答してください。ただし、ア~ウには1桁の非負整数が入ります。