求角問題9

Kinmokusei 自動ジャッジ 難易度: 数学 > 中学数学
2021年5月2日9:05 正解数: 6 / 解答数: 6 (正答率: 100%) ギブアップ数: 0

全 6 件

回答日時 問題 解答者 結果
2024年11月13日15:46 求角問題9 katsuo_temple
正解
2024年3月8日20:50 求角問題9 Prime-Quest
正解
2023年12月19日15:14 求角問題9 nmoon
正解
2021年10月12日16:01 求角問題9 naoperc
正解
2021年5月15日10:50 求角問題9 Michael
正解
2021年5月2日22:11 求角問題9 ゲスト
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

求面積問題20

Kinmokusei 自動ジャッジ 難易度:
3年前

11

問題文

2021.05.09 12:24 問題タイトルを修正しました。(解答に影響はありません)

正方形と半円を組み合わせた図のような図形があります。赤で示した線分の長さが6のとき、正方形の面積を求めてください。

解答形式

半角数字で解答してください。

求面積問題18

Kinmokusei 自動ジャッジ 難易度:
3年前

9

問題文

2つの正方形が図のように配置されています。赤い線分の長さが4のとき、2つの正方形の面積の合計を求めてください。

解答形式

半角数字で解答してください。

求長問題13

Kinmokusei 自動ジャッジ 難易度:
3年前

7

問題文

正方形の中に図のように線を引きました。赤、青の線分の長さがそれぞれ1,7のとき、緑の線分の長さを求めてください。

解答形式

半角数字で解答してください。

求値問題

Kinmokusei 自動ジャッジ 難易度:
4年前

7

問題文

三角形の3つの内角の大きさを$A,B,C$とします。このとき、次の式の最小値を求めてください。
$$
\frac{1-\cos A}{\cos B+\cos C}+\frac{1-\cos B}{\cos C+\cos A}+\frac{1-\cos C}{\cos A+\cos B}
$$

解答形式

最小値は$\frac {[ア]}{[イ]}$となります。$[ア]+[イ]$を解答してください。
ただし、$[ア],[イ]$にはそれぞれ自然数が入り、その最大公約数は$1$とします。

求長問題23

Kinmokusei 自動ジャッジ 難易度:
3年前

9

問題文

円の中の線分が図の条件を満たすとき、円の半径を求めてください。

解答形式

半径$r$は、$r=\dfrac{\sqrt{\fbox{アイ}}}{\fbox ウ}$と表されます。
文字列 アイウ を解答してください。ただし、ア~ウには1桁の非負整数が入ります。

求値問題7

Kinmokusei 自動ジャッジ 難易度:
3年前

5

問題文

(2021.3.13 15:56 追記) 解答に誤りがあったため修正しました。

次の不等式を満たす最大の自然数$n$を求めてください。
$$
2^{n+1}-10\sum_{k=1}^n \lfloor \frac{2^{k-1}}{5} \rfloor \le 20210220
$$ただし、$\lfloor x\rfloor$は$x$を超えない最大の整数を表します。

解答形式

半角数字で解答してください。

求値問題8

Kinmokusei 自動ジャッジ 難易度:
3年前

4

問題文

共通部分を持たない2円と、その共通接線があります。図中の同じ色で示した線分の長さが等しいとき、2円の半径比を求めてください。

※図は正確でないことに注意

解答形式

大円の半径を$R_1$、小円の半径を$R_2$とすると、$R_1:R_2=\fbox ア:\fbox イ$です。文字列 アイ を解答してください。
例:$R_1:R_2=5:2$ であれば 52 と解答

求面積問題6

Kinmokusei 自動ジャッジ 難易度:
4年前

10

問題文

図中、同じ印のついている辺・角同士は等しいです。
緑の凹四角形の面積が10のとき、青の三角形の面積を求めてください。

解答形式

半角数字で解答してください。

求面積問題16

Kinmokusei 自動ジャッジ 難易度:
3年前

8

問題文

図のように3つの正方形が配置されています。3つの線分の長さが図のように与えられたとき、緑の六角形の面積を求めてください。

解答形式

面積は、
$$
\fbox{アイ}+\frac{\fbox{ウエ}\sqrt{\fbox{オカ}}}{\fbox{キ}}
$$
となります。$\fbox ア~\fbox キ$には0以上9以下の整数が入ります。文字列「アイウエオカキ」を解答してください(「」は不要)。ただし、根号の中身や分数は最も簡単な形にしてください。

例$$
面積S=17+\frac{22\sqrt{52}}{8}\rightarrow 17+\frac{11\sqrt{13}}{2}\rightarrow 1711132 と解答
$$

求角問題6

Kinmokusei 自動ジャッジ 難易度:
4年前

7

問題文

図のように長方形や直角三角形の内接円が配置されています。青で示した角の角度を求めてください。

解答形式

度数法で求め、半角数字で0以上360未満の整数を解答してください。
※度や°などの単位は付けないでください。

求面積問題21

Kinmokusei 自動ジャッジ 難易度:
3年前

5

問題文

3つの正五角形がそれぞれ1頂点ずつを共有して図のように配置されています。緑で示した三角形の面積が22のとき、赤い三角形の面積を求めてください。

解答形式

半角数字で回答してください。

求面積問題19

Kinmokusei 自動ジャッジ 難易度:
3年前

5

問題文

2つの三角形ABCとQCRが図のように配置されています。各点が画像に記した条件を満たすとき、赤い三角形の面積を求めてください。

解答形式

半角数字で解答してください。