3つの半円が図のように配置されています。赤い線分の長さが$2\sqrt 2$のとき、青い線分の長さを求めてください。 なお、青い線分は2つの半円の中心間を結ぶ線分です。 ※最大の半円と最小の半円の半径比は2:1。傾いた半円は最小の半円に接する。
半角数字で解答してください。
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
3つの正五角形がそれぞれ1頂点ずつを共有して図のように配置されています。緑で示した三角形の面積が22のとき、赤い三角形の面積を求めてください。
半角数字で回答してください。
図の条件の下で、青で示した角の大きさを求めてください。
解答を度数法で表し、0以上180未満の数値を半角数字で解答してください。 単位("度・°"など)はつけないでください。
半円と四分円を組み合わせた図のような図形があります。青い線分の長さが$\sqrt 6$のとき、赤い線分の長さを求めてください。
正方形と正三角形を組み合わせた図のような図形について, 青で示した角の大きさを求めてください.
0以上180未満の整数を半角数字で解答してください。 ただし度数法で、単位を付けずに解答してください。
2つの三角形ABCとQCRが図のように配置されています。各点が画像に記した条件を満たすとき、赤い三角形の面積を求めてください。
図の条件の下で、水色で示した三角形の面積を求めてください。
求める面積 $x$ は互いに素な正整数 $a,b$ を用いて $x=\dfrac{a}{b}$ と表せるので、$a+b$ を解答してください。
正方形と正三角形を組み合わせた以下の図において、青で示した角の大きさを求めてください。
半角数字で解答してください。 解答は度数法で、単位を付けずに0以上180未満の整数として解答してください。
図の条件の下で、緑で示した三角形の面積を求めてください。
正方形・正三角形・円が図のように配置されているとき、色を付けた角の角度の差(の絶対値)を解答してください。
半角数字で0以上180未満の整数を解答してください。 「度」や「°」などの単位を付けずに解答してください。
図の条件において、$x$ の長さを求めてください。 なお、図中オレンジの点は直角三角形の内心です。
解答は $x=\sqrt a$ となります。$a$ を半角数字で解答してください。
長方形に内接する半円があります。青い三角形の面積が9のとき、赤い線分の長さを求めてください。
図の条件が成り立つ三角形において、$x$ で示した辺の長さを解答してください。
$x=\sqrt{\fbox{アイウ}}$ と表されるので、文字列 アイウ を解答してください。