求長問題19

Kinmokusei 自動ジャッジ 難易度: 数学 > 中学数学
2021年6月13日10:35 正解数: 8 / 解答数: 9 (正答率: 88.9%) ギブアップ数: 0

問題文

3つの半円が図のように配置されています。赤い線分の長さが$2\sqrt 2$のとき、青い線分の長さを求めてください。
なお、青い線分は2つの半円の中心間を結ぶ線分です。

※最大の半円と最小の半円の半径比は2:1。傾いた半円は最小の半円に接する。

解答形式

半角数字で解答してください。


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

求面積問題21

Kinmokusei 自動ジャッジ 難易度:
3年前

5

問題文

3つの正五角形がそれぞれ1頂点ずつを共有して図のように配置されています。緑で示した三角形の面積が22のとき、赤い三角形の面積を求めてください。

解答形式

半角数字で回答してください。

求長問題18

Kinmokusei 自動ジャッジ 難易度:
3年前

5

問題文

半円と四分円を組み合わせた図のような図形があります。青い線分の長さが$\sqrt 6$のとき、赤い線分の長さを求めてください。

解答形式

半角数字で解答してください。

求値問題8

Kinmokusei 自動ジャッジ 難易度:
3年前

4

問題文

共通部分を持たない2円と、その共通接線があります。図中の同じ色で示した線分の長さが等しいとき、2円の半径比を求めてください。

※図は正確でないことに注意

解答形式

大円の半径を$R_1$、小円の半径を$R_2$とすると、$R_1:R_2=\fbox ア:\fbox イ$です。文字列 アイ を解答してください。
例:$R_1:R_2=5:2$ であれば 52 と解答

2年前

4

【補助線主体の図形問題 #067】
 今週の図形問題です。中点と$30^{\circ}$を2個ずつ仕込んでいます。補助線でうまく活躍の場を与えてください。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

3年前

17

【補助線主体の図形問題 #016】
 先週は出題を休んでしまいましたが、今週はしっかり出題します。今回は求角問題を用意しました。暗算解法を仕込んであるのはいつも通り。ぜひぜひ補助線の魅力を感じてください!

解答形式

${\renewcommand\deg{{}^{\circ}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。角度は弧度法ではなく度数法で表すものとします。
(例) $12\deg$ → $\color{blue}{12.00}$  $\frac{360}{7}^{\circ}$ → $\color{blue}{51.43}$
 入力を一意に定めるための処置です。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

ヒント内容の予告

  1. 全体の方針をぼんやりと
  2. ヒント1の続き
  3. ヒント2の続き

【補助線主体の図形問題 #026】
 今回は、たびたび取り上げている傍心に二等辺三角形を組み合わせてみました。暗算解法が仕込まれているのはいつも通り変わりません。補助線を武器に傍心の性質をあぶり出しながらお楽しみください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
\def\jpara{\mathrel{\unicode{x2AFD}}}
\renewcommand\deg{{}^{\circ}}
\def\mytri#1{\triangle \mathrm{#1}}
\def\myang#1{\angle \mathrm{#1}}
\def\jsim{\mathrel{\unicode[sans-serif]{x223D}}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

ヒント内容の予告

  1. 前半の方針
  2. ヒント1の内容を具体的に
  3. 後半の方針

求角問題15

Kinmokusei 自動ジャッジ 難易度:
2年前

7

問題文

図の条件の下で、青で示した角の大きさを求めてください。

解答形式

解答を度数法で表し、0以上180未満の数値を半角数字で解答してください。
単位("度・°"など)はつけないでください。

求面積問題23

Kinmokusei 自動ジャッジ 難易度:
3年前

10

問題文

半円の内部に正方形を2つ、図のように配置しました。赤い線分の長さ(=2つの正方形の一辺の差)が3であるとき、青で示した部分の面積と緑で示された部分の面積の差を求めてください。

解答形式

半角数字で解答してください。

3年前

7

【補助線主体の図形問題 #029】
 今回は円がらみの求長問題を用意しました。隠されたある性質を補助線であぶり出しながらお楽しみください。若干面倒な計算が待ち受けているので、簡単な計算用紙があるといいかもしれません。

※2021年9月11日より難易度評価を見直して、総じて★+1しました。この問題の現難易度評価★3.0は、旧評価の★2.0にあたります。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

求面積問題19

Kinmokusei 自動ジャッジ 難易度:
3年前

5

問題文

2つの三角形ABCとQCRが図のように配置されています。各点が画像に記した条件を満たすとき、赤い三角形の面積を求めてください。

解答形式

半角数字で解答してください。

求角問題12

Kinmokusei 自動ジャッジ 難易度:
3年前

7

問題文

正方形と正三角形を組み合わせた図のような図形について, 青で示した角の大きさを求めてください.

解答形式

0以上180未満の整数を半角数字で解答してください。
ただし度数法で、単位を付けずに解答してください。


【補助線主体の図形問題 #119】
 今週の図形問題です。今回も補助線が活躍するのはいつも通りで、補助線次第で手慣れた方なら暗算で済んでしまいそうな計算量となっています。……なんて書いていますが、解き方は自由! ぜひお好きな解法でお楽しみください!!

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。