全問題一覧

カテゴリ
以上
以下

Ultimate

公開日時: 2024年5月10日11:20 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

√5の小数部分をaとするとき、a-√5の値を求めよ。

解答形式

数字や符号は半角で解答してください

7777777

公開日時: 2024年5月8日23:03 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 採点者ジャッジ

整数 高校数学 数学

問題文

$2024!$の約数の和は$2025$の倍数であることを示せ。

noname

公開日時: 2024年5月8日18:22 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 採点者ジャッジ

関数方程式

問題文

実数に対して定義され実数値をとる関数$f$であって、任意の実数$x,y$に対して$$f(f(x)+y)=2f^{[|y|]}(x)+f^{[|x|]}(y)$$を満たすものを全て求めてください。ただし、$f^{s}(t)$は$$f^{s}(t)=f(f(f(…f(t)))…),f^0(x)=0$$($f$が$s$個)、$[α]$は$α$以下の最大の整数とします。

*解答だけで構いません。

shakaidaisuki@.+_

公開日時: 2024年5月8日11:38 / ジャンル: 数学 / カテゴリ: 算数 / 難易度: / ジャッジ形式: 自動ジャッジ

灘  過去問

11の100乗(11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕
11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕
11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕
11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕
11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11✕11)の下6桁
を、パスカルの三角形を利用して求めなさい。ただし、1234567890の下6桁は567890です。

kusu394

公開日時: 2024年5月8日1:41 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ

整数問題

問題文

素数 $p,q$ が
$$4^p+2^p+1=p^2q$$を満たします. このようなすべての組 $(p,q)$ に対して, $p+q$ の総和を解答してください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

iwashi

公開日時: 2024年5月7日18:20 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$$
F(t) = \int_{0}^{1} \frac{\left|\sin tx\cos tx \right|}{\left(1+\sin ^{2}tx \right)\left(1+\cos ^{2}tx \right)\left(1+\tan ^{2}tx \right)}dx
$$とする。極限値$\displaystyle \lim_{t\to\infty} e^{n\pi F(t)}$が整数になるような正整数$n$のうち最小のものを求めよ。また、そのときの極限値を求めよ。

解答形式

1行目に$n$の値を、2行目に極限値を半角英数字で解答してください。

kusu394

公開日時: 2024年5月6日17:57 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$3$ つの自然数を積が $1000000$ となるように選ぶ方法は何通りありますか.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

追記:
回答いただいた内容的に, $3$ つの自然数を区別するかどうかがわかりにくかったと思われるので追記します.
この問題では $3$ つの自然数は区別しません. すなわち, $(1,10,100000)$ と $(10,1,100000)$ のように
並び替えただけの組は同一のものとみなします.

y

公開日時: 2024年5月5日15:47 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


$$
log_3\frac{27^n}{{9}^{n^2}}における,n,最大値を求めて下さい。
$$
$$
(1)\begin{cases}最大値\frac{1}{3}\\(n=\frac{1}{3})\end{cases}
(2)\begin{cases}最大値\frac{2}{3}\\(n=\frac{5}{6})\end{cases}
(3)\begin{cases}最大値\frac{5}{6}\\(n=\frac{2}{5})\end{cases}
(4)\begin{cases}最大値\frac{9}{8}\\(n=\frac{3}{4})\end{cases}
$$

sdzzz

公開日時: 2024年5月5日10:48 / ジャンル: 数学 / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$n^4+4n^2-38n+69$ が平方数となるような正整数 $n$ の総和を求めてください.

解答形式

半角数字で入力してください.

lemonoilemon

公開日時: 2024年5月4日22:22 / ジャンル: 数学 / カテゴリ: 算数 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何 面積 数学 幾何 競技数学 算数

問題文

四角形$ABCD$があります.線分$AC$上に点$P$を,線分$BP$上に点$Q$を,線分$DP$上に点$R$を取ります.直線$AQ$と線分$BC$,直線$CQ$と線分$AB$,直線$AR$と線分$CD$,直線$CR$と線分$AD$の交点をそれぞれ$S,T,U,V$とします.
$$\triangle BSA=(四角形BSPT)+8=\triangle BCT+12
\\\\\triangle AUD =30,\triangle CDV=25$$
が成り立つとき四角形$DVPU$の面積を求めてください.

解答形式

求める値は互いに素な自然数$p,q$を使って$\cfrac{q}{p}$と表されるので$p+q$の値を答えてください.

(変更 2024/6/27 ヒントを変えました.解説を未正解者も見れるように変更しました.)

lemonoilemon

公開日時: 2024年5月4日21:26 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

$12$桁の整数$111111111111$の素因数の総和を求めてください.
但し,素因数の1つとして4桁の素数が含まれます.

解答形式

整数で答えてください.

kusu394

公開日時: 2024年5月4日20:54 / ジャンル: 数学 / カテゴリ: 競技数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

自然数 $x$ に対して, $d(x)$ で $x$ の正の約数の個数を表します.
$$d(4n-1)+d(4n)=8$$ を満たす自然数 $n$ について, 小さいほうから $7$ 個の総和を求めてください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

追記
=8 のところ =6 と書いてしまっていたため訂正しました
大変申し訳ありません