数直線上の点 $\mathrm P$ は初め原点にある.サイコロを振り $1, 2$ が出たら正の向きに $2$ 進み,$3, 4, 5, 6$ が出たら負の向きに
$1$ 進むという操作を繰り返す.
$6$ 回の操作をおこなったとき,点 $\mathrm P$ が常に $x\geqq0$ の範囲にある確率を求めよ.
答えは互いに素な自然数 $a,b$ を用いて $\displaystyle\frac ab$ と表されるので,$1$ 行目に $a$ を,$2$ 行目に $b$ を答えよ.
方程式 $x^2 - 77\left\lfloor x \right\rfloor + 55\lceil x \rceil + 57 = 0$ の実数解の $2$ 乗の総和を解答してください.
高校生時代(2016年)の作問のリメイクです.
$8$ つのアルファベット $\mathrm{I, M, L, I, M, R, I, M}$ を並べて得られる文字列であって,$\mathrm{L}$ が $\mathrm{R}$ より左にあるでかつ,$\mathrm{I}$ の右隣に $\mathrm{M}$ が来るものはいくつありますか.
以下の条件を満たすような正整数$a,b,c$が存在するので,そのような$a,b,c$の組を$1$つ答えてください.
・ある奇素数$p$,正整数$N$が存在し,ある正整数$n$が存在して$a^n+b^n+c^n$が$p$で割り切れ,かつ任意の正整数$n$に対して$a^n+b^n+c^n$は$p^N$で割り切れない.
$(a,b,c)$と,この組に対して条件を満たす$p$を$1$つ用いて「$(a,b,c)$、条件を満たす$p$は~~」というように解答してください.
・誤答の場合$0$点.多少の書式の違いは認めます.
・正答の場合,$p_k$を$k$番目に小さい奇素数としたときに任意の$k=1,2,...s$に対して「ある正整数$N$が存在し,ある正整数$n$が存在して$a^n+b^n+c^n$が$p_k$で割り切れ,かつ任意の正整数$n$に対して$a^n+b^n+c^n$は$p_k^N$で割り切れない.」が成り立つような$s$の参加者全体中の最大値を$x$,あなたの解答に対する値を$y$としたとき$\dfrac{100y}{x}$以上の整数の内最小のものをあなたの得点とします.ただしこの値が$0$に等しい場合は$1$点とします.
・複数の提出があった場合は最後の提出のみを判定します.
三角形 $T$ の一つの辺の長さは平方数で,残りの辺の長さは素数であるとする.また,$T$ の面積は整数で,外接円の直径は素数であるとする.$T$ の各辺の長さを求めよ.
$T$の3辺の長さの総和としてありうる値の総和を解答してください。(論証は解説を参照してください。)
2018年3月の大学への数学「読者と作るページ」に掲載された問題です。
(1) $\sin{2x} = 2\sin{x}\cos{x}$を用いて, $\displaystyle\lim_{t\to +0}\int_{t}^{1} \log{\sin{\frac{\pi}{2}\theta}}\, d\theta = -\log{2}$を示せ(極限値の存在は認めてよい). これを用いて$\displaystyle\lim_{t\to + 0}\int_{t}^{1} \dfrac{\theta\cos{\frac{\pi}{2}\theta}}{\sin{\frac{\pi}{2}\theta}} \, d\theta$ を求めよ.
(2) $\displaystyle\lim_{n\to \infty} \left(\int_{\frac{1}{n}}^{1} \sqrt[n]{\sin{\dfrac{\pi}{2}\theta}} \, d\theta\right)^{n}
$を求めよ.
電卓などを利用することで, (1)の答えを $L_1$ とし, (2)の答えを $L_2$ とするとき, $L_1 + L_2$ の値を小数点第5位まで表示したものを回答してください. (例:0.1234567なら0.12345と解答する)