数学の問題一覧

カテゴリ
以上
以下

指数・対数

y 自動ジャッジ 難易度:
13日前

0

$$
a<0,b<0,c>0のとき\\9^{|a|-|b|+|c|}=27^{2|b|}について、cで表してください。
$$

C

nmoon 自動ジャッジ 難易度:
19日前

7

問題文

三角形 $ABC$ の外心を $O$,垂心を $H$,外接円を $\Gamma$ とする.そして,以下のように点を4つとる.

  • 直線 $BH$ と $\Gamma$ との交点を $P(\not=B)$ とする.
  • 直線 $PO$ と $\Gamma$ との交点を $Q(\not=P)$ とする.
  • 直線 $QH$ と $\Gamma$ との交点を $R(\not=Q)$ とする.
  • 直線 $RO$ と $\Gamma$ との交点を $S(\not=R)$ とする.

このとき,3点 $ C,H,S$ が同一直線上にあった.

$$AH=17 , AO=11$$

のとき,三角形 $ABC$ の面積を求めてください.

解答形式

答えを2乗した値は,互いに素な2つの正整数 $a,b$ を用いて $\displaystyle\frac{a}{b}$ と表されるので,$a+b$ を求めてください.

D

nmoon 自動ジャッジ 難易度:
19日前

10

問題文

4次方程式 $x^4-4x^3-21x^2-8x+4=0$ の4つの相異なる実数解を,小さいものから順に $a_{1},a_{2},a_{3},a_{4}$ とします.このとき,以下の値を求めてください:

$$\displaystyle\frac{1}{a_{1}^2-a_{1}a_{2}+a_{2}^2}+ \displaystyle\frac{1}{a_{3}^2-a_{3}a_{4}+a_{4}^2} $$

解答形式

互いに素な2つの正整数 $a,b$ を用いて $\displaystyle\frac{a}{b}$ と表されるので,$a+b$ を求めてください.

大きい数の位の値

noname 自動ジャッジ 難易度:
19日前

3

問題文

$1998^{2024}$の下$2$桁を求めよ。

解答形式

1行目に半角整数で入力してください。

数列と不等式

nanohana 自動ジャッジ 難易度:
21日前

2

問題文

$$
数列{a_{n}}は整数で、次の(Ⅰ) (Ⅱ)を満たす
$$$$
(Ⅰ)a_{1}= a_{2025}=0
$$$$
(Ⅱ)a_{n} a_{n+2} +2{a_{n+1}}^2≦ a_{n} a_{n+1}+ a_{n+1} a_{n+2}
$$$$
このとき、a_{2024}の値を求めよ。
$$

解答形式

$$a_{2024}の値を半角数字で入力してください。$$

積分方程式

nanohana 自動ジャッジ 難易度:
22日前

3

問題文

f(x)は連続で微分可能である。
次の式を満たすf(x)を求めよ。$$f(x)=2f(-x)+ \int_{0}^{x^{2}}f'(\sqrt{t})dt$$

解答形式

f(2024)の値を半角数字で入力してください。

確率

kiriK 採点者ジャッジ 難易度:
30日前

3

三角形ABCがある。初めに頂点ABCいずれかの頂点にランダムに駒を1つ置き、
操作nを繰り返し行うことで駒を移動させる。

$操作n:$$ カードがそれぞれn,n+1,n+2枚入った箱ABCを用意する。$$それぞれの箱にあたりの
カードが3,4,2枚入っている。$$
頂点Aにいる時は、まず箱BかCをランダムに選び、$$選んだ箱からカードを1枚引く。$$箱Bであたりを引くと頂点Aにそのまま、$$箱Cであたりを引くと頂点Bに、$$どちらの箱においてもハズレを引くと頂点Cに移動する。$$頂点Bにいる時は、箱Aからカードを1枚引き、$$あたりをひくと頂点Aに、$$ハズレだと頂点Cに移動する。
$$頂点Cにいるときは何もしない。$

$操作3→操作4→操作5→・・・→操作kを行った時(3 \leq k)頂点Aに駒がいる確率を求めよ。$

整数

you2024 自動ジャッジ 難易度:
35日前

4

nを素数、o,kを正の整数とする。

2ⁿ+5⁰=k²

をみたすn,o,kの組(n,o,k)をすべて求めよ。

答えとなるn,o,pの値の総和を回答してください

階乗の和

nanohana 自動ジャッジ 難易度:
35日前

11

問題文

$$a,bは負でない整数とする。$$$$このときa!+b!=(a+b)!$$$$を満たす組(a,b)を全て求めよ。$$

解答形式

組(a,b)の個数を入力してください。

整数

kiriK 自動ジャッジ 難易度:
38日前

16

$
f(x,n)=x^{2^{n+1}}-x^{2^{n}}とおく。
$
$
f(a,b) と f(c,d) の最大公約数として
考えられるものの最小値を求めよ。
$
$
ただし、a,b,c,dはいずれも2以上の自然数で、a\neq b \neq c \neq d とする。
$

整数

kiriK 自動ジャッジ 難易度:
38日前

13

$
f(x)= 2^{2^{x}x}-1
$
とする。このとき、
$
f(1)+f(2)+f(3)+・・・+f(2024)=A
$
とすると、Aの一の位の数字は何になるか。

自作問題2(極限)

contrail 自動ジャッジ 難易度:
40日前

10

問題文

方程式 $e^{nx}+x-2=0$ の正の解を$\alpha_n$とおきます.極限$\displaystyle \lim_{n\to \infty} (1+\alpha_n)^n$を求めて下さい.

解答形式

例)半角数字で解答して下さい.