数学の問題一覧

カテゴリ
以上
以下

三角形の存在確率

AS 自動ジャッジ 難易度:
27日前

1

サイコロを $3$ 回振って出た目を $a, b, c$ とする.このとき,$xy$ 平面上の $3$ 直線
$ax+2by+3c=0,\ 3bx+cy+2a=0,\ 2cx+3ay+b=0$
によって囲まれる三角形が存在する確率を求めよ.
答えは互いに素な自然数 $\eta,\zeta$ を用いて $\displaystyle\frac \eta\zeta$ と表されるので,$1$ 行目に $\eta$ を,$2$ 行目に $\zeta$ を答えよ.

120°の三角形

Ichijo 自動ジャッジ 難易度:
27日前

3

問題文

△ABCについて、辺BC,CA,ABの長さをそれぞれa,b,cとおく。∠C=120°であり、a,b,cが全て素数であるような組(a,b,c)を全て求めよ。

解答形式

(1,2,3)などのように、半角かっこの中に数字と半角コンマを入れ解答する。かっこ、半角コンマの前後にスペースを含まないこと。複数個ある場合は辞書順に並べて、(まずaの値が小さい順に並べ、aの値が同じな時はbの値が小さい順に並べ、aとbの値が同じな時はcの値が小さい順に並べること。)1行に1つ解答し、改行すること。

7進法の循環小数

AS 自動ジャッジ 難易度:
27日前

2

$n$ を自然数として $\displaystyle\frac1n$ と表される数全体の集合を $A$ とする.また,$A$ の要素のうち,$7$ 進法で小数展開したとき,小数点以下が基本周期 $3$ の数字の列で表される循環小数となるもの全体の集合を $B$ とする.
このとき,$B$ の要素の総和を求めよ.答えは互いに素な自然数 $a, b$ により $\displaystyle\frac ab$ と表されるので,$1$ 行目に $a$,$2$ 行目に $b$ を答えよ.

正8面体の塗り分け

AS 自動ジャッジ 難易度:
28日前

0

正 $8$ 面体の各面を,辺で隣接する面が同じ色とならないように赤・青・黄の $3$ 色のうちのいずれかで自由に塗る.

$(1)$ 正 $8$ 面体の各面を区別するとき,塗り方の総数を求めよ.
$(2)$ 正 $8$ 面体の各面を区別せず,回転によって一致する塗り方を同一視するとき,塗り方の総数を求めよ.

$(1)$ の答えを $1$ 行目に,$(2)$ の答えを $2$ 行目に記入せよ.


数直線上の点 $\mathrm P$ は初め原点にある.サイコロを振り $1, 2$ が出たら正の向きに $2$ 進み,$3, 4, 5, 6$ が出たら負の向きに
$1$ 進むという操作を繰り返す.
$6$ 回の操作をおこなったとき,点 $\mathrm P$ が常に $x\geqq0$ の範囲にある確率を求めよ.
答えは互いに素な自然数 $a,b$ を用いて $\displaystyle\frac ab$ と表されるので,$1$ 行目に $a$ を,$2$ 行目に $b$ を答えよ.

1100

shakayami 自動ジャッジ 難易度:
31日前

28

問題文

$a, b$ を非負整数とします。xy平面上の点 $(0, 0)$から点 $(a, b)$まで、$x$ 軸正方向に1進むか、$y$ 軸正方向に1進むかで到達するための道の数を $C(a, b)$ とします。

$0 \leq a < 1100 $ かつ $0 \leq b < 1100 $ であるような非負整数組 $(a, b)$ であって、$C(a, b)$ が奇数であるようなものの個数を答えてください。

解答形式

答えは非負整数なので,その数値を回答してください.OMCと同じです.

Floor and Ceiling

Lim_Rim_ 自動ジャッジ 難易度:
31日前

28

問題文

方程式 $x^2 - 77\left\lfloor x \right\rfloor + 55\lceil x \rceil + 57 = 0$ の実数解の $2$ 乗の総和を解答してください.

備考

高校生時代(2016年)の作問のリメイクです.

2^{2^{10}} mod 2027

kzy33550336 自動ジャッジ 難易度:
31日前

51

問題文

$2^{2^{10}}$ を素数 $2027$ で割った余りを求めてください.

My_Problem

Lim_Rim_ 自動ジャッジ 難易度:
31日前

37

問題文

$8$ つのアルファベット $\mathrm{I, M, L, I, M, R, I, M}$ を並べて得られる文字列であって,$\mathrm{L}$ が $\mathrm{R}$ より左にあるでかつ,$\mathrm{I}$ の右隣に $\mathrm{M}$ が来るものはいくつありますか.

A.

JoeFight 採点者ジャッジ 難易度:
37日前

5

問題文

以下の条件を満たすような正整数$a,b,c$が存在するので,そのような$a,b,c$の組を$1$つ答えてください.
・ある奇素数$p$,正整数$N$が存在し,ある正整数$n$が存在して$a^n+b^n+c^n$が$p$で割り切れ,かつ任意の正整数$n$に対して$a^n+b^n+c^n$は$p^N$で割り切れない.

解答形式

$(a,b,c)$と,この組に対して条件を満たす$p$を$1$つ用いて「$(a,b,c)$、条件を満たす$p$は~~」というように解答してください.

得点について

・誤答の場合$0$点.多少の書式の違いは認めます.

・正答の場合,$p_k$を$k$番目に小さい奇素数としたときに任意の$k=1,2,...s$に対して「ある正整数$N$が存在し,ある正整数$n$が存在して$a^n+b^n+c^n$が$p_k$で割り切れ,かつ任意の正整数$n$に対して$a^n+b^n+c^n$は$p_k^N$で割り切れない.」が成り立つような$s$の参加者全体中の最大値を$x$,あなたの解答に対する値を$y$としたとき$\dfrac{100y}{x}$以上の整数の内最小のものをあなたの得点とします.ただしこの値が$0$に等しい場合は$1$点とします.

・複数の提出があった場合は最後の提出のみを判定します.

Triangle T

Lim_Rim_ 自動ジャッジ 難易度:
41日前

4

問題文

三角形 $T$ の一つの辺の長さは平方数で,残りの辺の長さは素数であるとする.また,$T$ の面積は整数で,外接円の直径は素数であるとする.$T$ の各辺の長さを求めよ.

解答形式

$T$の3辺の長さの総和としてありうる値の総和を解答してください。(論証は解説を参照してください。)

備考

2018年3月の大学への数学「読者と作るページ」に掲載された問題です。

lim_int_sin (大数宿題2024-10)

Lim_Rim_ 自動ジャッジ 難易度:
41日前

3

問題文

(1) $\sin{2x} = 2\sin{x}\cos{x}$を用いて, $\displaystyle\lim_{t\to +0}\int_{t}^{1} \log{\sin{\frac{\pi}{2}\theta}}\, d\theta = -\log{2}$を示せ(極限値の存在は認めてよい). これを用いて$\displaystyle\lim_{t\to + 0}\int_{t}^{1} \dfrac{\theta\cos{\frac{\pi}{2}\theta}}{\sin{\frac{\pi}{2}\theta}} \, d\theta$ を求めよ.

(2) $\displaystyle\lim_{n\to \infty} \left(\int_{\frac{1}{n}}^{1} \sqrt[n]{\sin{\dfrac{\pi}{2}\theta}} \, d\theta\right)^{n}
$を求めよ.

解答形式

電卓などを利用することで, (1)の答えを $L_1$ とし, (2)の答えを $L_2$ とするとき, $L_1 + L_2$ の値を小数点第5位まで表示したものを回答してください. (例:0.1234567なら0.12345と解答する)