数学の問題一覧

カテゴリ
以上
以下

Ratio K/D (2019-理①-6)

Lim_Rim_ 自動ジャッジ 難易度:
41日前

3

問題文

$1000^{n}$ ($n$ は自然数) の正の約数の個数を $D_{n}$ とし, そのうち $10^{n}$ より大きく, $100^{n}$ より小さいものの個数を $K_{n}$ とする。
極限値
$$
\lim_{n \to \infty} \dfrac{K_{n}}{D_{n}}
$$
を求めよ。

解答形式

電卓を用いるなどして極限値の小数第5位までを解答してください.(0.1234567...の場合0.12345と解答する)

備考

本問は京大作問サークル理系模試2019の第1回6番に掲載している問題です.

Two sequences (学コン2025-2-6)

Lim_Rim_ 自動ジャッジ 難易度:
42日前

3

問題文

$p=2^{10} - 3$とおき, 数列$a_n, b_n$を以下の式で定める.
\begin{aligned}
&a_0=0,\quad a_1 = 1,\quad a_{n+2} = 2a_{n+1} +2a_n & (n=0,1,\dots) \\
&b_0=0, \quad b_1 = 1,\quad b_{n+2} = 2b_{n+1} +(p+2)b_n & (n=0,1,\dots)
\end{aligned}

(1) $a_n,b_n$をそれぞれ$n$で表せ.
(2) $a_{1024}$を$p$で割った余りを求めよ. ただし, 整数$m$に対して$m^p\equiv m\pmod{p}$であることを用いてもよい.

解答形式

(2) の解答を入力してください((1)は解答参照)

備考

本問は大学への数学2025年2月号6番に掲載された自作問題です.

OMC没問7

natsuneko 自動ジャッジ 難易度:
53日前

2

問題文

$\sin \angle BAC = \dfrac{7}{8}$ を満たす鋭角三角形 $ABC$ について,$B$ から $AC$ に下ろした垂線の足を $D$,$C$ から $AB$ に下ろした垂線の足を $E$ とします.また,線分 $BC$ 上に点 $F$ を $\angle DEF = 90^\circ$ を満たすように取ったところ $BF=2, CF=6$ が成立しました.このとき,三角形 $ABC$ の面積の二乗を求めてください.ただし,答えは互いに素な正整数 $a,b$ を用いて $\dfrac{b}{a}$ と表されるので,$a+b$ の値を解答してください.

解答形式

半角整数値で解答してください.

2月前

13

問題文

垂心を$H$とする鋭角三角形$ABC$があり、$AB=9,AC=11,CH=7$を満たしています。
$△AHC$の外接円を$Γ$とし、直線$BH$と$Γ$の交点のうち$H$でない点を$D$として、線分$CD$の中点を$M$とします。

線分$HM$と線分$AC$の交点を$E$としたときの、$DE$の長さの$2$乗を求めてください。

解答形式

求める値は互いに素な整数$a,b$を用いて$\dfrac{a}{b}$と表されるので、$a+b$を解答してください。

4次関数の極値

Ys_math_and_phys 採点者ジャッジ 難易度:
2月前

0

問題文

$\ x,\ a,\ b,\ c,\ d\ $は実数であるとする。$xy\ $平面上に以下のグラフを書く。
$$ y = x^4 + ax^3 + bx^2 +cx +d $$

このとき、このグラフにおいて極値を取る$\ x\ $座標が3つ存在する条件を導け。
ただし、その3つは互いに異なるものとする。

解答形式

入試本番や模試のような形で、記述形式で解答してください。
少し遅くなってしまうかも知れませんが、採点もさせていただきます。

注意

解説は正解者のみに公開される設定になっています。ですが、ヒントの欄に書いてあることと全く同じなので、正解できなかった場合もヒントをみて納得してもらえるとよいと思います。

もし余裕があれば...

  • 問題の感想を教えてくれると嬉しいです。特に、難易度感や、教育的意義についてコメントしてくれると助かります。

  • 例えば、以下のような観点でコメントしてくれると嬉しいです。
    (もちろん、全てのテーマでコメントせずとも大丈夫ですし、他の観点からのコメントや批判も歓迎します)

    1. この設問が完答できる生徒のレベル感は?(ヒント有、無それぞれ)
    2. ヒントありとして、授業に用いるとしたらどうか?
    3. ヒント無しで大学入試で出題されるとしたらどうか?

自作問題7

iwashi 自動ジャッジ 難易度:
2月前

1

問題文

$m,m'\geq1,n\geq0$を満たす任意の整数$m,m',n$に対し$,\ $$A(m,n)$は
$$
A(1,n) = \frac{1}{n!},\qquad A(m+m',n) = \sum_{k=0}^{n}A(m,k)A(m',n-k)
$$を満たす。$1 \leq m \leq 100,0 \leq n \leq 100$を満たし$,\ $かつ$A(m,n)$が整数であるような整数$m,n$について$,\ $積$m\times n$の総和を求めよ。

初投稿

Upasha 自動ジャッジ 難易度:
2月前

12

問題文

命題「aⁿ+bⁿ=cⁿ (n整数、a,b,cの最大公約数1)を満たす全ての自然数a,b,cは互いに素である」の真偽を述べよ

解答形式

真ならば真、偽ならば偽と入力

二項係数の和と極限

nps 自動ジャッジ 難易度:
2月前

9

問題文

解答形式

半角で入力してください。
また、必要であればe,πを用いてください。

いつものking property(に似た)問題

nps 自動ジャッジ 難易度:
2月前

1

問題文

∮(-π/6→π/3) ((sinx)^3)/(sinx+cosx)dxの値を求めよ。

解答形式

解答は π/a-(√ b+c)/d-(1/e)log(√f+g)の形になります。
a,b,c,d,e,f,gに当てはまる自然数を順に半角で答えてください。
また、1つの値の間は1つずつ空白を開けるようにしてください。
(例)a=2, b=3, c=11,d=5,e=6,f=7,g=8の場合、
2 3 11 5 6 7 8


問題文

nを一桁の自然数とする。xについての多項式、

∫(0→x) (t^3 + {1/√(n-2)(n-3)(n-4)} t^-2 +1)^n dt

について、x^6の係数を自然数にするようなnを求めなさい。

解答形式

半角で一桁の数字を入力してください。

実数の存在性

daikokuda_harumichi 採点者ジャッジ 難易度:
2月前

0

問題文

x, y は x^2 + y^2 = 1 を満たす実数である。このとき、、等式 x^2 + y^2 + (y/x)^2 - xy - (y^2)/x - y = 0を満たすx, yは存在するか。 存在する場合はx, yを求め、存在しない場合はそれを示せ。

解答形式

日本語で論述してください。

不動点と放物線

sha256 自動ジャッジ 難易度:
2月前

0

問1.(この問題の解答は不要。)

$f(x)$を$2$次の多項式とする。
$4$次方程式$f(f(x))=x$が$4$つの実数解$x=x_i(i=1,2,3,4)$を持つとき、
座標平面上の$4$点$P_i(x_i,f(x_i))$が同一円周上にあることを示せ。

問2.(この問題の答えを半角英数字で入力せよ。)

問1において、$f(x)=3x^2-11x-15$の場合について、
実際に$4$点$P_i$が共有する円の半径$r$と中心の座標(p,q)を求め、
$pqr^2$の値を解答せよ。