数学の問題一覧

カテゴリ
以上
以下

問題文

任意の集合$p$と$q$があるとし、$\bar{p},\bar{q}$はそれぞれ$p,q$の補集合であるとする

「$\bar{p}$が$q$であるための必要条件」であることは、
「$p$が$\bar{q}$であるための必要十分条件」であるための
1.必要十分条件である
2.必要条件であるが十分条件ではない
3.十分条件であるが必要条件ではない
4.必要条件でも十分条件でもない

解答形式

番号で入力してください。

サインコサイン

aoneko 採点者ジャッジ 難易度:
16月前

4

問題文

$y=2sinαcos(α+β)+sinβ$とする

(1)$α=30°,β=15°$のときの$y$の値は

$\frac{\sqrt{ア}+\sqrt{イ}}{ウ}$
(2)$α=20°,β=5°$のときの$y$の値は

$\frac{\sqrt{エ}}{オ}$

(1)が分からない場合はヒント1を見よ
(2)が分からない場合はヒント2を見よ

解答形式

自由。どの数字がどの文字に対応してるかさえ分かるようにしてあればOK。

合同ではない三角形の個数

KNKR_UT 自動ジャッジ 難易度:
16月前

1

問題文

正$N$角形の頂点から3点選び三角形を作るとき,合同ではない三角形は何通りできるか。$a,b,c$に当てはまる非負整数と$e$に当てはまる式を答えてください。
$$
n( \{ (x, y, z)\, |\, \boxed{\strut \,a\,}x+\boxed{\strut \,b\,}y+\boxed{\strut \,c\,}z=\boxed{\strut \,e\,},\: x,\! y,\! z\! \in\! {\mathbb N} \})
$$

ただし${\mathbb N}$は非負整数全体の集合とし,${n({\mathbb A})}$は集合${{\mathbb A}}$の要素数を表します。

解答形式

1行目に$a,b,c$をスペース区切りで答えてください。$a+b+c$が最小になるよう答えてください。$a,b,c$は順不同です。
2行目に$e$をスペースを含めず答えてください。
例)
1 1 1
N+10

正多角形

Michael 自動ジャッジ 難易度:
16月前

0

問題文

正$n$角形$A_1,A_2,\cdots,A_n$と,同じ平面上に点$X$があって$$A_1^2= A_2^2+\cdots+A_n^2 $$を満たしている.このような点$X$が存在する最大の自然数$n$を求めよ.

解答形式

$n$の値を半角数字で1行目に入力してください。

底の範囲は...?

aoneko 採点者ジャッジ 難易度:
18月前

2

問題文

a≠1である
M=log₂aのときlogₐM>1となるaの範囲を求めよ

解答形式

例)a>0

求値問題7

Kinmokusei 自動ジャッジ 難易度:
19月前

3

問題文

(2021.3.13 15:56 追記) 解答に誤りがあったため修正しました。

次の不等式を満たす最大の自然数$n$を求めてください。
$$
2^{n+1}-10\sum_{k=1}^n \lfloor \frac{2^{k-1}}{5} \rfloor \le 20210220
$$ただし、$\lfloor x\rfloor$は$x$を超えない最大の整数を表します。

解答形式

半角数字で解答してください。

求長問題14

Kinmokusei 自動ジャッジ 難易度:
19月前

2

問題文

半径21の扇形に図のように線を引きました。青い三角形の面積が213のとき、赤い線分の長さを求めてください。

※高校数学カテゴリに入れてますが、中学数学範囲での綺麗な解法をTwitterにて頂きました。是非考えてみてください。

解答形式

解答は既約分数$\frac{\fbox{アイウ}}{\fbox{エ}}$となります。文字列「アイウエ」を解答してください。
ただし、$\fbox ア ~ \fbox エ$には$0$以上$9$以下の整数が入ります。

連立する整数問題

aoneko 採点者ジャッジ 難易度:
20月前

3

問題文

$0$でない整数$x,y,z$について$A=xy−z,B=x-yz$と定める。$A+B=3,A-B=5$となるとき、$x,y,z$の値を求めよ

求面積問題16

Kinmokusei 自動ジャッジ 難易度:
20月前

2

問題文

図のように3つの正方形が配置されています。3つの線分の長さが図のように与えられたとき、緑の六角形の面積を求めてください。

解答形式

面積は、
$$
\fbox{アイ}+\frac{\fbox{ウエ}\sqrt{\fbox{オカ}}}{\fbox{キ}}
$$
となります。$\fbox ア~\fbox キ$には0以上9以下の整数が入ります。文字列「アイウエオカキ」を解答してください(「」は不要)。ただし、根号の中身や分数は最も簡単な形にしてください。

例$$
面積S=17+\frac{22\sqrt{52}}{8}\rightarrow 17+\frac{11\sqrt{13}}{2}\rightarrow 1711132 と解答
$$

logの式変形

aoneko 採点者ジャッジ 難易度:
20月前

0

問題文

$$
(a,M,N∈ℝ)
$$

$$
\begin{cases}p=log_{a}M・・・① \\ q=log_{M}N^{2}・・・②\end{cases}
$$
$$
(1)N=a^{p}のとき、qの値を求めなさい。
$$
$$
(2)N=pのとき、aをpとqで表すとa=p ^{◻︎}
$$
$$
⓪2pq\\ ①\frac{2}{pq}\\ ②2(p+q)\\ ③(pq)²
$$

解答形式

例)(1)q=1(2)⓪

求値問題6

Kinmokusei 自動ジャッジ 難易度:
20月前

0

問題文

$x,y,z$は全て正の実数とします。次式で定義される$f(x,y,z)$について、次の値を求めてください。$$f(x,y,z)=\frac{1+x^2}{y+z}+\frac{1+y^2}{z+x}+\frac{1+z^2}{x+y}$$
$(1)$ $f(x,y,z)$の最小値
$(2)$ $x+y+z=1$のとき、$f(x,y,z)$の最小値
$(3)$ $x^2+y^2+z^2=1$のとき、$f(x,y,z)$の最小値

解答形式

$(1)$の答えは$\fbox ア$、$(2)$の答えは$\fbox イ$、$(3)$の答えは$\fbox ウ\sqrt{\fbox エ}$です。
文字列「アイウエ」を解答してください。

面積の二乗の小数部分

zyogamaya 自動ジャッジ 難易度:
20月前

10

問題文

どの辺の長さも整数である$\triangle ABC$の面積を$S$とする。$S^2$の小数部分を求めよ。

解答形式

とりうるすべての小数部分を小さい順に都度改行、列挙してください。
例:
「0,1/2,1/3,1/6,1/√5」の場合、

0
0.5
0.'3'
0.1'6'
1/\sqrt{5}