次の値を小数第2位まで答えよ。
$$\int_0^1\frac{1}{2\pi}e^{-\frac{x^2}2}dx$$
ただし必要ならば以下のリンクを使ってもよい。
https://ja.wikipedia.org/wiki/正規分布#正規分布表
$a$は$x$と独立であるとする。
$x$の方程式
$$(\cos^4x)^{\log_2(a\sin x)+1}=(a\sin2x)^{\log_2(a\sin2x)}$$
の$0\leqq x\leqq \frac\pi2$における解を$y$とする。
この時、以下の値を求めよ。
$$\int_0^1\frac1{\sin^2y}da$$
数列 {${a_n}$} を以下のように定義する。
$$ a_{n+3} = a_{n+2}+ a_{n+1} - a_n,\quad a_1 = \alpha,\ a_2 = \beta, a_3 = \gamma $$
ただし、$\alpha,\ \beta,\ \gamma\ $は実数である。
この問題について感想をくれると嬉しいです。例えば、以下の観点でコメント・批評があると嬉しいです。
$f(x)$を$x$の小数部分とする。
以下の値を求めよ。
$$\int^{25}_0f(\sqrt{x})dx$$
$$\int^\sqrt2_{-\sqrt2}\sin x\cos x\{\tan x+\tan{(\frac{\pi}{2}-x)}\}dx$$