数学の問題一覧

カテゴリ
以上
以下
49日前

13

問題文

垂心を$H$とする鋭角三角形$ABC$があり、$AB=9,AC=11,CH=7$を満たしています。
$△AHC$の外接円を$Γ$とし、直線$BH$と$Γ$の交点のうち$H$でない点を$D$として、線分$CD$の中点を$M$とします。

線分$HM$と線分$AC$の交点を$E$としたときの、$DE$の長さの$2$乗を求めてください。

解答形式

求める値は互いに素な整数$a,b$を用いて$\dfrac{a}{b}$と表されるので、$a+b$を解答してください。

4次関数の極値

Ys_math_and_phys 採点者ジャッジ 難易度:
50日前

0

問題文

$\ x,\ a,\ b,\ c,\ d\ $は実数であるとする。$xy\ $平面上に以下のグラフを書く。
$$ y = x^4 + ax^3 + bx^2 +cx +d $$

このとき、このグラフにおいて極値を取る$\ x\ $座標が3つ存在する条件を導け。
ただし、その3つは互いに異なるものとする。

解答形式

入試本番や模試のような形で、記述形式で解答してください。
少し遅くなってしまうかも知れませんが、採点もさせていただきます。

注意

解説は正解者のみに公開される設定になっています。ですが、ヒントの欄に書いてあることと全く同じなので、正解できなかった場合もヒントをみて納得してもらえるとよいと思います。

もし余裕があれば...

  • 問題の感想を教えてくれると嬉しいです。特に、難易度感や、教育的意義についてコメントしてくれると助かります。

  • 例えば、以下のような観点でコメントしてくれると嬉しいです。
    (もちろん、全てのテーマでコメントせずとも大丈夫ですし、他の観点からのコメントや批判も歓迎します)

    1. この設問が完答できる生徒のレベル感は?(ヒント有、無それぞれ)
    2. ヒントありとして、授業に用いるとしたらどうか?
    3. ヒント無しで大学入試で出題されるとしたらどうか?

自作問題7

iwashi 自動ジャッジ 難易度:
56日前

1

問題文

$m,m'\geq1,n\geq0$を満たす任意の整数$m,m',n$に対し$,\ $$A(m,n)$は
$$
A(1,n) = \frac{1}{n!},\qquad A(m+m',n) = \sum_{k=0}^{n}A(m,k)A(m',n-k)
$$を満たす。$1 \leq m \leq 100,0 \leq n \leq 100$を満たし$,\ $かつ$A(m,n)$が整数であるような整数$m,n$について$,\ $積$m\times n$の総和を求めよ。

初投稿

Upasha 自動ジャッジ 難易度:
59日前

12

問題文

命題「aⁿ+bⁿ=cⁿ (n整数、a,b,cの最大公約数1)を満たす全ての自然数a,b,cは互いに素である」の真偽を述べよ

解答形式

真ならば真、偽ならば偽と入力

二項係数の和と極限

nps 自動ジャッジ 難易度:
2月前

9

問題文

解答形式

半角で入力してください。
また、必要であればe,πを用いてください。

いつものking property(に似た)問題

nps 自動ジャッジ 難易度:
2月前

1

問題文

∮(-π/6→π/3) ((sinx)^3)/(sinx+cosx)dxの値を求めよ。

解答形式

解答は π/a-(√ b+c)/d-(1/e)log(√f+g)の形になります。
a,b,c,d,e,f,gに当てはまる自然数を順に半角で答えてください。
また、1つの値の間は1つずつ空白を開けるようにしてください。
(例)a=2, b=3, c=11,d=5,e=6,f=7,g=8の場合、
2 3 11 5 6 7 8


問題文

nを一桁の自然数とする。xについての多項式、

∫(0→x) (t^3 + {1/√(n-2)(n-3)(n-4)} t^-2 +1)^n dt

について、x^6の係数を自然数にするようなnを求めなさい。

解答形式

半角で一桁の数字を入力してください。

実数の存在性

daikokuda_harumichi 採点者ジャッジ 難易度:
2月前

0

問題文

x, y は x^2 + y^2 = 1 を満たす実数である。このとき、、等式 x^2 + y^2 + (y/x)^2 - xy - (y^2)/x - y = 0を満たすx, yは存在するか。 存在する場合はx, yを求め、存在しない場合はそれを示せ。

解答形式

日本語で論述してください。

不動点と放物線

sha256 自動ジャッジ 難易度:
2月前

0

問1.(この問題の解答は不要。)

$f(x)$を$2$次の多項式とする。
$4$次方程式$f(f(x))=x$が$4$つの実数解$x=x_i(i=1,2,3,4)$を持つとき、
座標平面上の$4$点$P_i(x_i,f(x_i))$が同一円周上にあることを示せ。

問2.(この問題の答えを半角英数字で入力せよ。)

問1において、$f(x)=3x^2-11x-15$の場合について、
実際に$4$点$P_i$が共有する円の半径$r$と中心の座標(p,q)を求め、
$pqr^2$の値を解答せよ。

データの分析・数列

oolong_tea 自動ジャッジ 難易度:
2月前

1

問題文

$1$ から $30$ までの自然数が書かれたカードがそれぞれ $1$ 枚ずつの計 $30$ 枚ある。
この中から $1$ 枚を引き,書かれている数字を確認してから束に戻す操作を $11$ 回繰り返す。
この $11$ 回の操作で得られた自然数を小さい順にならべ,$A_{1}$ から $A_{11}$ とする。
$A_{1}$ から $A_{11}$ は以下の条件を満たしている。

<条件>
① $A_{1}$ から $A_{11}$ は相異なる自然数である。
② データの範囲は $27$ である。
③ データの四分位範囲 [$\mathrm{IQR}$] は $9$ である。
④ 四分位数 [$Q_1,Q_2,Q_3$] はこの順に等比数列になっている。
⑤ 中央値と平均値 [$\bar{A}$] の差の絶対値は $1$ である。
⑥ $A_7$ から $A_{11}$ までの $5$ つの数の和は $A_1$ から $A_5$までの $5$ つの数の和のちょうど $2$ 倍である。
⑦ $A_{1}$ から $A_{11}$ の中に立方数が $2$ つある。
⑧ このデータのうち四分位数を除いた $8$ 個の数字を $2$ つずつに分けてできた $4$ つの数字の組
  $(A_1,A_2),(A_4,A_5),(A_7,A_8),(A_{10},A_{11})$ について、それぞれの組に $1$ つずつ素数がある。
⑨ このデータには外れ値が $1$ つ存在する。ただし外れ値は以下の通りに定義する。
   [$Q_1-1.5 \times \mathrm{IQR}$ 以下 または $Q_3+1.5 \times \mathrm{IQR}$ 以上]

問 このデータの要素を決定せよ。

解答形式

$A_1$ から $A_{11}$ までの11個の自然数を半角空白区切りで1行で回答

投稿者より

問題の不備などありましたら,
感想から教えてくださるとありがたいです。

2月前

5

問題文

点$O_1,O_2$を中心とする円$\omega_1,\omega_2$が異なる$2$点$A,B$で交わっている。これらの共通外接線のうち直線$O_1O_2$に関して$B$と同じ側に接点を持つ物を$l$とし、$\omega_1,\omega_2$との接点を$S_1,S_2$とする。

直線$AB$と$l$の交点を$X$とし、$X$から$\omega_1,\omega_2$に引いた($l$以外の)接線の接点を$T_1,T_2$とすると、$O_1,T_2,S_2$ / $O_2,T_1,S_1$はそれぞれ一直線上にあった。

$\omega_1$の半径が$\sqrt{3}$、$S_1X=\sqrt{2}$のとき、五角形$AO_1S_1S_2O_2$の面積を求めてください。

解答形式

求める値は正整数$a$及び、互いに素な正整数$b,c$、平方因子を持たない正整数$d$により$a+\dfrac{b\sqrt{d}}{c}$
と表せるので、$a+b+c+d$を半角英数字で入力してください。

垂心と外心と〇心

Rak 自動ジャッジ 難易度:
3月前

2

問題文

△ABC(AB<AC)の垂心をH、外心をOとし、直線HOと辺AB,BCの交点をD,Eとし、点Eは線分BCを3:1に内分している。このとき、AD/DBの値を求めなさい。ただし、Bの側からD,H,O,Eの順に位置している。

解答形式

互いに素な正の整数a,bを用いて、b/aの形で答えてください。
解答には
AD/DB=b/aと答えてください。