$a,b$ を実数とする.$1$ 以上の実数 $k$ に対し,$x,y$ についての連立方程式
$$
\begin{cases}
k\cos x + \dfrac{1}{k}\sin y = a\\[6pt]
k\sin x + \dfrac{1}{k}\cos y = b
\end{cases}\
$$
が $0\le x\le\pi,\ 0\le y\le\pi$ の範囲に解をもつような点 $(a,b)$ の存在する領域を $D_k$ とし,$ab$ 平面における $D_k$ の面積を $S(k)$ とする.
(1) $D_1$ を $ab$ 平面上で求めよ.また,$S(1)$ を求めよ.
(2) $\displaystyle \pi<\lim_{k\to\infty}S(k)<2\pi$ を示せ.
(3) 連立方程式の解がさらに $x=y$ を満たすような点 $(a,b)$ の存在する領域を $E_k$ とする. $k$ が $1$ 以上のすべての実数値をとるとき,$E_k$ が通りうる範囲を $ab$ 平面上で求めよ.
特に指定しません。
$a,b$ を正の整数とする.$2$ 以上の整数 $n$ に対して $n=ab$ と表せるような $(a,b)$ の組について,$a+b$ の最小値を $f(n)$ とする.
例えば, $f(5)=6,\ f(12)=7$ である.
(1) $n$ を正の整数とする.$f\bigl(2\cdot 3^{n}\bigr)$ を $n$ を用いて表せ.
(2) $a,b$ を正の整数とする.方程式
$$
f\bigl(2\cdot 3^{a}\bigr)=f\bigl(4\cdot 3^{b}\bigr)
$$の解が存在するかどうかを,理由を付けて判別せよ.存在するならば、その解を全て求めよ。
特に指定しません。
以下の値を求めてください.
$$\sum_{k=0}^{2026} \frac{k^2}{k^2-2026k+1013×2026}$$
整数で解答してください
左右 $3$ 列,上下 $3$ 行からなる $9$ 個のマス目があり,左から $1$ 列目かつ上から $2$ 行目にあるマス目を $S$ とする。
また,$1$ 辺の長さがマス目の $1$ 辺の長さと等しく,向かい合う $2$ つの面が黒色に塗られた立方体を $C$ とする。
最初,マス目 $S$ に $C$ の黒色の面が完全に重なるように $C$ を置く。そして操作 (*) を次のように定める。
(*) $C$ が置かれているマスに隣り合うマス(斜めに隣り合うマスは除く)のうちどれか $1$ つを無作為に選び,
そのマスに $C$ の側面が完全に重なるように,$C$ の $1$ 辺を軸にして $C$ をたおす。
$n$ を正の整数とする。操作 (*) を $n$ 回行ったとき,マス目 $S$ に $C$ の黒色の面が完全に重なっている確率を $p_n$ とする。
$$
\lim_{n\to\infty} p_{2n}
$$を求めよ。
半角数字・記号で解答。
実数係数 $10$ 次多項式 $f(x)$ は以下を満たしている.
$$f(0)=2025$$$$f(1)=25$$
$f(x)=0$ の(重複度を込めた)$10$ 個の複素数解を $\alpha_1,\alpha_2,...,\alpha_{10}$ とする.
$\frac{1}{\alpha_1},\frac{1}{\alpha_2},...,\frac{1}{\alpha_{10}}$ を根にもつ実数係数 $10$ 次多項式のうち,最高次の係数が $1$ であるものを $g(x)$ としたとき,$g(1)$ を求めよ.
求める値は互いに素な正の整数 $a,b$ を用いて $\frac{a}{b}$ と表せるので,$a+b$ を解答してください
$n^2+78n-79$ を $100$ で割った余りが平方数とならないような最小の正整数 $n$ を求めよ.
半角数字で入力してください(数字のみ)。
$a,n$ を正の整数とする.
$$\int ax^ne^xdx$$
の $e^x$ の係数が $2026!$ であるような $(a,n)$ の組は何個ありますか?
整数で解答してください
$a, b$ を実数とする。複素数 $z$ に対して
$$
f(z)=z^{2}+a z+b
$$
とおく。また,方程式 $f(z)=0$ のすべての解は $\lvert z\rvert \le 1$ を満たしている。
$(1)$ 点 $f(1+i)$ がとりうる範囲を複素数平面上に図示せよ。
$(2)$ 点 $w$ が虚軸上を動くとき,点 $f(w)$ がとりうる範囲を複素数平面上に図示せよ。
範囲を文章や不等式で表せば可とします。
例)・$3$点$1$,$1+i$,$-1+i$を頂点とする三角形の周及び内部。
・座標平面における不等式 $y\le x^2$が表す領域。
$r$ を正の実数とし,自然数 $n$ に対して,整式 $f_n(x)$ を
$$
f_n(x)=\sum_{k=1}^{n}\frac{x^{k}}{r^{k}}
$$
とする。また,整式 $f_n(x)$ を整式 $x^{2}-x-1$ で割った余りを $a_n x + b_n$ とする。
$(1)$ 数列 {${a_n}$},{${b_n}$}の一般項をそれぞれ求めよ。
$(2)$ 数列 {${a_n}$},{${b_n}$} がいずれも $0$ でない実数に収束するために正の実数 $r$ が満たすべき条件を求めよ。
また,そのときの極限値をそれぞれ $r$ を用いて表せ。
特に指定しません。