数学の問題一覧

カテゴリ
以上
以下

解の配置

Auro 採点者ジャッジ 難易度:
21日前

0

問題文

$a,b$ を実数とする.$1$ 以上の実数 $k$ に対し,$x,y$ についての連立方程式

$$
\begin{cases}
k\cos x + \dfrac{1}{k}\sin y = a\\[6pt]
k\sin x + \dfrac{1}{k}\cos y = b
\end{cases}\
$$

が $0\le x\le\pi,\ 0\le y\le\pi$ の範囲に解をもつような点 $(a,b)$ の存在する領域を $D_k$ とし,$ab$ 平面における $D_k$ の面積を $S(k)$ とする.

(1) $D_1$ を $ab$ 平面上で求めよ.また,$S(1)$ を求めよ.

(2) $\displaystyle \pi<\lim_{k\to\infty}S(k)<2\pi$ を示せ.

(3) 連立方程式の解がさらに $x=y$ を満たすような点 $(a,b)$ の存在する領域を $E_k$ とする. $k$ が $1$ 以上のすべての実数値をとるとき,$E_k$ が通りうる範囲を $ab$ 平面上で求めよ.

解答形式

特に指定しません。

整数(典型的なテーマ)

Auro 採点者ジャッジ 難易度:
22日前

0

問題文

$a,b$ を正の整数とする.$2$ 以上の整数 $n$ に対して $n=ab$ と表せるような $(a,b)$ の組について,$a+b$ の最小値を $f(n)$ とする.
例えば, $f(5)=6,\ f(12)=7$ である.

(1) $n$ を正の整数とする.$f\bigl(2\cdot 3^{n}\bigr)$ を $n$ を用いて表せ.

(2) $a,b$ を正の整数とする.方程式
$$
f\bigl(2\cdot 3^{a}\bigr)=f\bigl(4\cdot 3^{b}\bigr)
$$の解が存在するかどうかを,理由を付けて判別せよ.存在するならば、その解を全て求めよ。

解答形式

特に指定しません。

Americium243 自動ジャッジ 難易度:
23日前

40

問題文

以下の値を求めてください.
$$\sum_{k=0}^{2026} \frac{k^2}{k^2-2026k+1013×2026}$$

解答形式

整数で解答してください

確率

Auro 自動ジャッジ 難易度:
28日前

0

問題文

左右 $3$ 列,上下 $3$ 行からなる $9$ 個のマス目があり,左から $1$ 列目かつ上から $2$ 行目にあるマス目を $S$ とする。
また,$1$ 辺の長さがマス目の $1$ 辺の長さと等しく,向かい合う $2$ つの面が黒色に塗られた立方体を $C$ とする。

最初,マス目 $S$ に $C$ の黒色の面が完全に重なるように $C$ を置く。そして操作 (*) を次のように定める。

(*) $C$ が置かれているマスに隣り合うマス(斜めに隣り合うマスは除く)のうちどれか $1$ つを無作為に選び,
そのマスに $C$ の側面が完全に重なるように,$C$ の $1$ 辺を軸にして $C$ をたおす。

$n$ を正の整数とする。操作 (*) を $n$ 回行ったとき,マス目 $S$ に $C$ の黒色の面が完全に重なっている確率を $p_n$ とする。
$$
\lim_{n\to\infty} p_{2n}
$$を求めよ。

解答形式

半角数字・記号で解答。

解の逆数を解とする方程式

Americium243 自動ジャッジ 難易度:
28日前

21

問題文

実数係数 $10$ 次多項式 $f(x)$ は以下を満たしている.
$$f(0)=2025$$$$f(1)=25$$

$f(x)=0$ の(重複度を込めた)$10$ 個の複素数解を $\alpha_1,\alpha_2,...,\alpha_{10}$ とする.
$\frac{1}{\alpha_1},\frac{1}{\alpha_2},...,\frac{1}{\alpha_{10}}$ を根にもつ実数係数 $10$ 次多項式のうち,最高次の係数が $1$ であるものを $g(x)$ としたとき,$g(1)$ を求めよ.

解答形式

求める値は互いに素な正の整数 $a,b$ を用いて $\frac{a}{b}$ と表せるので,$a+b$ を解答してください

領域の面積

Th2006 自動ジャッジ 難易度:
36日前

4

問題文

3点A(-1,-2),B(2,1),C(𝑝+𝑞,𝑝-𝑞)
に対して実数𝑝,𝑞が
𝑝²+𝑞²+𝑝+𝑞≦3/2を満たすとする。
このとき3点A,B,Cを通る上に凸な二次関数が
存在しないような点Cの取りうる範囲の面積を求めよ。

解答形式

半角で答えのみ。分母に無理数が来る時は有理化し最も簡単な形で解答してください。
回答の際に一文字目に計算記号が来ないようにしてください。
(ダメな例)-2√2+π→(良い例)π-2√2
また掛け算の記号は省略し分数はa/bの形で表すこと。根号→√ 円周率→π ネイピア数→e

京大作サーマスガチャ2025 - SR22

Kta 自動ジャッジ 難易度:
37日前

18

問題文

$n^2+78n-79$ を $100$ で割った余りが平方数とならないような最小の正整数 $n$ を求めよ.

解答形式

半角数字で入力してください(数字のみ)。

とある問題の改題

Auro 採点者ジャッジ 難易度:
39日前

0

問題文

$p$ を $3$ 以上の素数とする。
$f(x),\ g(x)$ はいずれも整数係数の多項式である。
$f(x),\ g(x)$ が次の条件を全て満たすとき,
存在しうる $f(x),\ g(x)$ の組み合わせは何通りあるか。

$(a)$ $f(g(x)) = x^{p^p} + 1$

$(b)$ $f(0)$ が $p$ で割り切れる。

$(c)$ $1 \le g(0) \le p^{p}$

解答形式

pを用いて解答。答えのみの解答で構いません。

積分に関する整数問題

Americium243 自動ジャッジ 難易度:
41日前

6

問題文

$a,n$ を正の整数とする.
$$\int ax^ne^xdx$$
の $e^x$ の係数が $2026!$ であるような $(a,n)$ の組は何個ありますか?

解答形式

整数で解答してください

複素数平面と2次方程式

Auro 採点者ジャッジ 難易度:
42日前

0

問題文

$a, b$ を実数とする。複素数 $z$ に対して

$$
f(z)=z^{2}+a z+b
$$

とおく。また,方程式 $f(z)=0$ のすべての解は $\lvert z\rvert \le 1$ を満たしている。

$(1)$ 点 $f(1+i)$ がとりうる範囲を複素数平面上に図示せよ。

$(2)$ 点 $w$ が虚軸上を動くとき,点 $f(w)$ がとりうる範囲を複素数平面上に図示せよ。

解答形式

範囲を文章や不等式で表せば可とします。
例)・$3$点$1$,$1+i$,$-1+i$を頂点とする三角形の周及び内部。
・座標平面における不等式 $y\le x^2$が表す領域。

整式の割り算と極限

Auro 採点者ジャッジ 難易度:
42日前

0

問題文

$r$ を正の実数とし,自然数 $n$ に対して,整式 $f_n(x)$ を

$$
f_n(x)=\sum_{k=1}^{n}\frac{x^{k}}{r^{k}}
$$

とする。また,整式 $f_n(x)$ を整式 $x^{2}-x-1$ で割った余りを $a_n x + b_n$ とする。

$(1)$ 数列 {${a_n}$},{${b_n}$}の一般項をそれぞれ求めよ。

$(2)$ 数列 {${a_n}$},{${b_n}$} がいずれも $0$ でない実数に収束するために正の実数 $r$ が満たすべき条件を求めよ。
  また,そのときの極限値をそれぞれ $r$ を用いて表せ。

解答形式

特に指定しません。

ガウス記号

Auro 採点者ジャッジ 難易度:
42日前

0

問題文

座標平面上の原点と点 $(2,2)$ を結ぶ線分(端点を含む)を $L$ とする。また,実数 $t$ に対して $t$ 以下の最大の整数を $[t]$ で表す。

次の (*) が成り立つような実数の組 $(a,b)$ の集合を $ab$ 平面上に図示せよ。

(*) 関数 $y=[ax+b]$ のグラフと $L$ がただ一つの共有点を持つ。

解答形式

$(a,b)$に関する必要十分条件を解答しても可とします。