公開日時: 2021年6月16日13:57 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
3本の杭と中央に穴のあいた大きさの異なる$n$枚の円盤があります。いま、杭の1つにすべての円盤が小さいものが上にくるように積み重なっています(初期状態)。この状態から下記のルールを守りながら操作を行うとき、初期状態から到達し得る状態は何通りありますか。ただし初期状態も1通りと数え、また3本の杭は区別することとします。
例えば「左端の杭に大きさ1から$n$の全ての円盤が積み重なっている状態」を1つ、そこから操作を一回だけ行い、「左端に大きさ2から$n$の円盤、真ん中に大きさ1の円盤が積み重なっている状態」を1つ、のように状態の数をカウントします。また、「真ん中の杭に大きさ1から$n$の全ての円盤が積み重なっている状態」と、「右端の杭に大きさ1から$n$の全ての円盤が積み重なっている状態」のように杭が異なる場合もそれぞれ別の状態としてカウントします。
半角英数字と下記の半角記号で答えてください。式中にスペースを含めないでください。
公開日時: 2021年6月6日8:54 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 採点者ジャッジ
$y=2sinαcos(α+β)+sinβ$とする
(1)$α=30°,β=15°$のときの$y$の値は
$\frac{\sqrt{ア}+\sqrt{イ}}{ウ}$
(2)$α=20°,β=5°$のときの$y$の値は
$\frac{\sqrt{エ}}{オ}$
(1)が分からない場合はヒント1を見よ
(2)が分からない場合はヒント2を見よ
自由。どの数字がどの文字に対応してるかさえ分かるようにしてあればOK。
公開日時: 2021年5月31日23:09 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
正$N$角形の頂点から3点選び三角形を作るとき,合同ではない三角形は何通りできるか。$a,b,c$に当てはまる非負整数と$e$に当てはまる式を答えてください。
$$
n( \{ (x, y, z)\, |\, \boxed{\strut \,a\,}x+\boxed{\strut \,b\,}y+\boxed{\strut \,c\,}z=\boxed{\strut \,e\,},\: x,\! y,\! z\! \in\! {\mathbb N} \})
$$
ただし${\mathbb N}$は非負整数全体の集合とし,${n({\mathbb A})}$は集合${{\mathbb A}}$の要素数を表します。
1行目に$a,b,c$をスペース区切りで答えてください。$a+b+c$が最小になるよう答えてください。$a,b,c$は順不同です。
2行目に$e$をスペースを含めず答えてください。
例)
1 1 1
N+10
公開日時: 2021年2月20日20:24 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
次の不等式を満たす最大の自然数$n$を求めてください。
$$
2^{n+1}-10\sum_{k=1}^n \lfloor \frac{2^{k-1}}{5} \rfloor \le 20210220
$$ただし、$\lfloor x\rfloor$は$x$を超えない最大の整数を表します。
半角数字で解答してください。
公開日時: 2021年2月13日20:24 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
半径21の扇形に図のように線を引きました。青い三角形の面積が213のとき、赤い線分の長さを求めてください。
※高校数学カテゴリに入れてますが、中学数学範囲での綺麗な解法をTwitterにて頂きました。是非考えてみてください。
解答は既約分数$\frac{\fbox{アイウ}}{\fbox{エ}}$となります。文字列「アイウエ」を解答してください。
ただし、$\fbox ア ~ \fbox エ$には$0$以上$9$以下の整数が入ります。
公開日時: 2021年1月23日20:12 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ
図のように3つの正方形が配置されています。3つの線分の長さが図のように与えられたとき、緑の六角形の面積を求めてください。
面積は、
$$
\fbox{アイ}+\frac{\fbox{ウエ}\sqrt{\fbox{オカ}}}{\fbox{キ}}
$$
となります。$\fbox ア~\fbox キ$には0以上9以下の整数が入ります。文字列「アイウエオカキ」を解答してください(「」は不要)。ただし、根号の中身や分数は最も簡単な形にしてください。
例$$
面積S=17+\frac{22\sqrt{52}}{8}\rightarrow 17+\frac{11\sqrt{13}}{2}\rightarrow 1711132 と解答
$$
公開日時: 2021年1月19日15:11 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 採点者ジャッジ
$$
(a,M,N∈ℝ)
$$
$$
\begin{cases}p=log_{a}M・・・① \\ q=log_{M}N^{2}・・・②\end{cases}
$$
$$
(1)N=a^{p}のとき、qの値を求めなさい。
$$
$$
(2)N=pのとき、aをpとqで表すとa=p ^{◻︎}
$$
$$
⓪2pq\\ ①\frac{2}{pq}\\ ②2(p+q)\\ ③(pq)²
$$
例)(1)q=1(2)⓪